
Mapl Manual

Max Suarez, Atanas Trayanov, Arlindo da Silva, Purnendu Chakraborty

March 14, 2014

Contents

1 Introduction 3

2 ESMF - A review of aspects relevant to MAPL 6

3 MAPL 9

3.1 Overview . 10

3.2 Building a Mapl Gridded Component: Mapl Core 10

3.3 Building complex applications: Mapl Connect 26

3.4 Doing Diagnostics: Mapl History . 30

3.5 Doing Diagnostics Asynchronously: Mapl CFIOServer 35

3.6 Connecting Import Fields to Data on File: Mapl ExtData 37

3.7 Performing Arithemtic Operations on Fields: Mapl NewArthParser 43

3.8 Doing I/O: Mapl CFIO . 44

3.9 Miscellaneous Features: Mapl Utils . 45

3.10 A complete MAPL example - Held-Suarez benchmark for FVdycore 47

A MAPL Application Programming Interface (API) 48

A.1 MAPL CapMod — Implements the top entry point for MAPL components 51

A.2 MAPL GenericMod . 55

1

2

A.3 MAPL CFIO — CF Compliant I/O for ESMF 81

A.4 MAPL LocStreamMod – Manipulate location streams 102

A.5 MAPL BaseMod — A Collection of Assorted MAPL Utilities 107

A.6 ESMFL MOD . 115

A.7 MAPL HistoryGridCompMod . 126

A.8 MAPL GenericCplCompMod . 131

A.9 MAPL ExtDataGridCompMod - Implements Interface to External Data . . 134

Bibliography 139

Index: Alphabetical list of subroutines/functions 140

Chapter 1

Introduction

This document describes Mapl, a software layer that establishes usage standards and soft-
ware tools for building ESMF compliant components. This package

1. facilitates the porting of existing codes to ESMF

2. provides tools and a straightforward recipe for building new ESMF components, and

3. provides much greater interoperability between compliant components than between
current ESMF compliant components (!?!?!).

As the Earth System Modeling Framework (ESMF) has become available, several groups
have been involved in prototyping its use in climate and weather prediction models and in
data assimilation systems. Existing programs have been converted to use the superstructure
of the framework at MIT, NCAR, GFDL, Goddard, NCEP and the DoD (see impacts).
One of the most complete attempts to use ESMF has been the development of the GEOS-5
AGCM, a model targeted by the MAP announcement. GEOS-5 has been built ‘from the
ground up’ using the latest available versions of ESMF superstructure and infrastructure.
Figure 1 represents a hierarchical (tree) implementation of the component-based GEOS-5
software where each box is an ESMF component performing some specific function and the
root of the tree serves as the top level control point.

All of these efforts have produced much constructive feedback to the ESMF core devel-
opment team, and have helped refine the design and improve the implementation of the
framework. They have also served to identify the most important directions for future
extensions. Comparing the various implementations led to two seemingly contradictory
conclusions: all implementations are different and much of what they do is the same. Both
conclusions were anticipated, since ESMF is a general framework designed to meet a wide
variety of needs. This generality is an important strength of the ESMF design, but it also
implies that there are many different ways of using ESMF - even when performing very simi-
lar tasks. Other observations from this early experience were that each group, within its own

3

http://www.earthsystemmodeling.org
http://www.earthsystemmodeling.org/impacts/index.shtml
http://geos5.org
http://map.nasa.gov

4

Figure 1.1: Structure of the GEOS-5 atmospheric general circulation model

implementations, repeatedly needed functions that provided higher level functionality than
that provided by the basic ESMF tools, and that the core methods of ESMF components
(Run, Initialize, and Finalize) looked very similar in all their implementations.

The Mapl package arose as a response to this early experience, particularly during the
construction of GEOS-5. It is based on the observation that much of the work done in
these initial implementations can be standardized; thus, reducing the labor of constructing
ESMF applications in the future, as well as increasing their interoperability. In its initial
implementation, Mapl provides:

• Specific conventions and best practices for the utilization of ESMF in climate models

• A middle-ware layer (between the model and ESMF) that facilitates the adoption of
ESMF by climate models.

This enhancement in usability of ESMF must come at the cost of reduced generality. To
make the framework more usable for our applications, we make assumptions and place
requirements on the applications that ESMF, with its goal of generality, could not. Mapl
does this ‘on top of’ ESMF and as a separate layer through which the application uses
ESMF for some of its functions (although for most things, applications will continue to
use ESMF directly). We feel that this middle-ware-layer approach is the right way to get
the usability and interoperability that climate model components require of the framework,
without sacrificing ESMF’s generality and extensibility.

The documentation is arranged as follows: In Chapter 2, we review relevant aspects of
ESMF, followed by a chapter that aims to introduce readers, already familiar with ESMF,

5

quickly into Mapl through examples that increase in complexity, demonstrating the salient
features of Mapl. The following chapter provides are more detailed description of Mapl
followed by the Mapl API (Application Programming Interface) and the source codes for
tutorials in the appendix.

Chapter 2

ESMF - A review of aspects
relevant to MAPL

Leaf and Composite components are defined here.

The Earth System Modeling Framework (ESMF) [1] is a software package designed to pro-
vide some of the essential functions needed by parallel, scalable earth system models in a
machine-independent way. ESMF is implemented as a collection of very general program-
ming classes that can be used both to construct ESMF components and to connect them
to one another. These classes thus support modelers in building interoperable and portable
codes. This design is illustrated by the ESMF ‘sandwich’ diagram (Figure 2), where the
user’s computational code sits between the two ESMF layers.

The simplest ESMF implementation consists of building a Gridded Component (an ESMF
superstructure class) that encapsulates the user code, interfacing it to the framework by
defining the ESMF callable methods (Initialize, Run and Finalize, hereafter, IRF meth-
ods). This can actually be done without using any of the ESMF Infrastructure - a strategy
that fails to capitalize on some of ESMF’s greatest strengths. Such ‘encapsulation’ imple-
mentations have dominated the early adoptions of ESMF.

More sophisticated implementations put user data in ESMF infrastructure objects (primar-
ily ESMF Fields) which can then be manipulated by a wide array of ESMF methods to
facilitate the coupling of components with different data structures (i.e., that are on differ-
ent grids) and to insulate the user from the architecture-specific implementation layers that
are used for inter-process or inter-processor communication, I/O, etc.

An ESMF component (represented by a box in Figure 1, e.g. solar) consists of four (or
just one — SetServices!?!?!) public component interface functions performing specific
roles:

6

7

Figure 2.1: Schematic of the ESMF ‘sandwich’ architecture. The framework consists of two
parts, an upper level superstructure layer and a lower level infrastructure layer. User code
is sandwiched between these two layers. Taken from [2]

.

SetServices: A component’s SetServices function is called when an instance (object) of
the component is created and is the only required public interface of the component.
It takes the instantiated component as the first argument, and an integer return
code as the second. The goal of SetServices is to register with the framework the
component’s user-defined routines that satisfy the Initialize, Run and Finalize
requirements.

Initialize: A component’s Initialize function is called to configure an instance (object)
of the component (allocate space, initialize data etc.). In addition to the component’s
instance, the arguments to this function include two ESMF States (one Import and
one Export) and an ESMF Clock. The ESMF State variables are used to pass data
between components. The Clock is used to pass the simulation time counter to the
component instance.

Run: A component’s Run function is called to carry out a cycle of the iteration that makes
up the kernel of a component’s computational algorithm. This function contains the
kernel of user code and is called repeatedly as part of the component instance’s life
cycle. It takes the same argument list as Initialize.

Finalize: A component’s Finalize function is called to terminate the the component
instance cleanly (release space, write results etc.). It takes the same argument list as
Initialize.

Some important aspects of the ESMF API that are relevant to Mapl are:

8

• Data structures added to an ESMF State can have arbitrary meta tags associated with
them

• An ESMF State can contain an ESMF State variable allowing recursive nesting of
ESMF State variables.

• Hierarchical organization of gridded components: ESMF GridComps can be simple con-
tainers for user code (leaf components) or they can contain other gridded ESMF GridComps
(composite components). The notion of composite components allows a straightfor-
ward way of organizing applications as a hierarchy of components. ESMF does not
require a hierarchical organization, but it is the most natural way of connecting ESMF
components.

• ESMF also defines the notion of Coupler Components. These are similar to gridded
components, but are not intended for user code; rather, they house the transformations
necessary to convert between Exports of one component and Imports of another.

In designing ESMF, a deliberate decision was made to have the framework provide these
services in a very general way, and not to prejudge how future models would use it or what
programming models would best suit future computer architectures. This generality is an
important strength of ESMF, but it is also an impediment to many users that would prefer
a more specific formulation for porting existing codes or a better defined recipe for building
new codes with ESMF. The generality also impacts the interoperability of applications,
since the ESMF interfaces to the IRF methods are general purpose, and they carry little
information (other than the grid definition) about the physical content of the data moving
in and out of the gridded component.

The middle-ware layer implemented in Mapl includes the following design elements:

1. Aides in constructing a component’s IRF methods

2. Provides easy-to-use tools for describing the contents of a component’s Import and
Export states, as well as adopting conventions for what must be described. But in no
way specifying what the contents must be. Mapl extends the ESMF State concept to
a component’s Internal state, and help it manage its persistent data.

3. Facilitates the use of ESMF Fields and thus of the ESMF Infrastructure layer

4. Facilitates the coupling of components into complex applications. This requires a
means of describing the connectivity between components and of using the description
of the Import and Export states to couple components - Mapl adopts the hierarchical
organization as its architecture for making complex applications and uses both com-
posite gridded components and ESMF coupler components to establish connections
between members of the hierarchy.

Chapter 3

MAPL

Contents

3.1 Overview . 10

3.2 Building a Mapl Gridded Component: Mapl Core 10

3.2.1 Writing the IRF method . 11
3.2.2 The new Internal (IN) State . 12
3.2.3 Description of State contents . 12
3.2.4 Rules for Components . 14
3.2.5 The recipe for writing a MAPL GridComp 20

3.3 Building complex applications: Mapl Connect 26

3.3.1 What MAPL GenericSetServices Does with the Children 27
3.3.2 Rules for Mapl Application . 28
3.3.3 Configuration . 28

3.4 Doing Diagnostics: Mapl History 30

3.5 Doing Diagnostics Asynchronously: Mapl CFIOServer 35

3.6 Connecting Import Fields to Data on File: Mapl ExtData . . 37

3.7 Performing Arithemtic Operations on Fields: Mapl NewArthParser 43

3.8 Doing I/O: Mapl CFIO . 44

3.9 Miscellaneous Features: Mapl Utils 45

3.9.1 Error Handling . 45
3.9.2 Profiling . 46
3.9.3 Astronomy . 46
3.9.4 Universal Constants . 46

3.10 A complete MAPL example - Held-Suarez benchmark for FVdy-
core . 47

9

10

3.1 Overview

The Mapl library can be divided into the following sub-systems:

Mapl Core is a collection of routines and conventions used to build ESMF GridComps (or
to wrap legacy codes as ESMF GridComps). In particular, it includes the means of
describing a component’s Import and Export states as well as the new Internal
state.

Mapl Connect is a collection of routines and conventions used for organizing Mapl-
ESMF Gridded Components into a Mapl hierarchy.

Mapl History is an ESMF Gridded Component that sits inside MAPL and can be in-
stantiated to provide data writing services for a MAPL hierarchy.

Mapl ExtData is an ESMF Gridded Component that sits inside MAPL and can be in-
stantiated to provide data services to the IMPORT states of MAPL components in a
hierarchy.

Mapl Utils is a set of support utillities for commonly performed tasks in global climate
models. Mapl itself uses some of these, but, like Mapl History, Mapl components
or applications need not use them.

Mapl CFIO is an I/O layer for ESMF Fields, Bundles and States that uses CF (Climate
and Forecast) compliant methods to read from (or write to) NetCDF, HDF or GrADS
files. It relies internally on Mapl and must be built with it and can be used even if
one is not using the rest of Mapl.

The distinction between Mapl Core and Mapl Connect, which in the Mapl code are
mostly within the MAPL Generic module, is important. One may use Mapl Core alone as
a means of facilitating the introduction of ESMF, with no intention of ever coupling the
component to a Mapl hierarchy. A component so contructed is a perfectly good ESMF
component and, other than having to access the Mapl library to build and execute, is not
special in any way. The code in an application instantiating it would not need to know it
was built with Mapl machinery.

3.2 Building a Mapl Gridded Component: Mapl Core

Mapl’s original intention, and its core function, is to provide assistance in writing ESMF
Gridded components. It does this in the following ways:

1. It makes it easier to write a component’s IRF methods. In fact in some cases they
need not be written at all.

11

2. It adds an Internal (IN) ESMF State to the component, supplementing the Import(IM)
and Export(EX) states required by ESMF.

3. It provides a means of describing the contents of the three states so that Mapl can
help manage them.

4. It adopts ground rules for the behavior of a component and its treatment of the three
states.

5. It defines a standard recipe for writing Mapl-based ESMF Gridded Components.

Each of these items is discussed in more detail in the following subsections. It will be helpful
to refer to the complete Mapl example in section 3.10.

3.2.1 Writing the IRF method

After writing some gridded components, one realizes that, except the actual insertion of
the user code, most SetServices and IRF methods are very similar, and that it would be
economical to generalize this ‘boilerplate’ code. Mapl provides three (or two!?!?!) ways
of doing this.

a) The first way is to use the generic versions of SetServices and the IRF methods
provided by Mapl as the component’s methods. When MAPL GenericSetServices is
invoked, it registers the three Generic IRF methods. If not overridden, these become
the component’s actual methods.

b) A second way of using Mapl is to simply call the generic versions of the methods from
the component-specific versions, allowing them to perform the boilerplate functions.

c) Should this really be included!?!?! A third way is to simply use the source code
of the generic versions as templates for the specific versions. Taking this approach is
dangerous and not allowed for Mapl-compliant components.

So what do the Generic IRF methods do? This will be described in detail in subsequent sec-
tions, but simply stated, they manage the IM/EX States and a third ESMF State ’Internal’
that we will discuss below. We will refer to these three states as the IM/EX/IN states. Note
that they are all ordinary ESMF States. From the description of the three states (3.2.3) pro-
vided in the data services, Mapl is able to create, allocate, initialize, and destroy all items
in these states; it can also checkpoint and restart the Internal and Import states. The
IRF methods also implement connectivity of children components, creating the appropriate
couplers, registering their services, and executing their IRF methods.

12

3.2.2 The new Internal (IN) State

ESMF requires that the control is passed back to it at the end of a component’s Run method.
In the spirit of having as unintrusive a design as possible, ESMF says nothing about a
component’s internal state which will probably be needed during subsequent executions of
the component’s Run. Mapl provides a mechanism to place parts of its true internal state
in an ESMF State called an Internal state, that is similar to the IM/EX states.

Since it is desirable that gridded components be as object-oriented as possible, the frame-
work has to allow them to be fully instantiatable. This requires that whatever the com-
ponent defines as its internal state be attached (in the object-oriented paralance) to the
instance of the ESMF GridComp. ESMF provides such a mechanism - effectively a hook on
which a component can hang the current instance of its internal state.

Accordingly, this new IN state does not appear explicitly in the argument list of IRF meth-
ods, as is the case with the IM/EX states; instead it is attached to the ESMF GridComp and,
in principle, is accessible only through Mapl and can be queried.

All of the mechanisms for registering and manipulating data that are already available in
Mapl for the IM/EX States, are extended to the IN state. The default accessibility rules for
this state are that its items can be written only by the component and can be read only by
its parent. All data registered in this state by the component’s SetServices are, of course,
automatically allocated, checkpointed, and restarted by the Mapl Initialize and Finalize
methods.

3.2.3 Description of State contents

The simplest ESMF gridded component consists of the IRF methods encapsulating the
user’s computational code. These methods are private to the component, but are callable
by the framework; in fact, they can only be called by the framework. This is accomplished by
having in each component a public method (SetServices) that tells the framework what
functions it can perform (initialize the component, run it, etc.). The framework can then
invoke these functional services when they are required.

The interface to these services is prescribed by ESMF and includes Import and Export
(IM/EX) States, through which all data is exchanged between the components. These states
can contain only ESMF objects (primarily ESMF Fields and other ESMF States), but ESMF
says nothing about how they are to be used. Mapl assumes that IM/EX states consist only
of ESMF Fields and other ESMF States. It also adopts the convention that, by default,
items in its Export state are not modified by other components and that a component
cannot modify items in its Import state (this default behavior can be changed by adding a
‘FRIENDLY TO’ attribute to an IM state).

A major innovation in Mapl is a means of describing the contents of the IM/EX states.

13

Mapl takes the view that

a component, in addition to giving the framework access to its functional ser-
vices, should also tell the framework about its data services, i.e., what it needs
from others and what it can provide.

Mapl extends the use of SetServices to accomplish this. The SetServices method of a
Mapl-based gridded component will contain spec calls like the following:

Adding Import state:

call MAPL_AddImportSpec (GC, &
SHORT_NAME = ’PLE’, &
LONG_NAME = ’air_pressure’, &
UNITS = ’Pa’, &
DIMS = MAPL_DimsHorzVert, &
VLOCATION = MAPL_VLocationEdge, &
RC = STATUS)

Adding Export state:

call MAPL_AddExportSpec (GC, &
SHORT_NAME = ’U’, &
LONG_NAME = ’eastward_wind’, &
UNITS = ’m s-1’, &
DIMS = MAPL_DimsHorzVert, &
VLOCATION = MAPL_VLocationCenter, &
RC = STATUS)

Adding Internal state:

call MAPL_AddInternalSpec(GC, &
SHORT_NAME = ’PKZ’, &
LONG_NAME = ’pressure_to_kappa’, &
UNITS = ’Pa$^\kappa$’, &
PRECISION = ESMF_KIND_R8, &
DIMS = MAPL_DimsHorzVert, &
VLOCATION = MAPL_VLocationCenter, &
RC = STATUS)

Note that some of the attributes being set for the ESMF Fields, such as units, likely reflect
assumptions made by the component and are usually static; others may be set at run time,
say from a configuration file.

14

The information provided in setting data services is used by Mapl to allocate and initialize
the states, to couple to other components, and to help build the component’s IRF methods,
as described below.

3.2.4 Rules for Components

The first thing to clarify is what we mean by a Mapl-based ESMF GridComp. The following
general rules apply to Mapl-compliant components:

Rule 1 The component must be a fully-compliant ESMF GridComp. This implies that its
only public method is SetServices and it registers IRF methods with ESMF.

Rule 2 Associated with each instance of a Mapl-compliant ESMF GridComp there is an
ESMF Grid that Mapl will use to allocate data.

Rule 3 Every ESMF GridComp has a configuration (that stores parameters). A Mapl grid-
ded component will expect it to be open (accessible!?!?!) when SetServices is called.

Rule 4 Components can be run sequentially or concurrently; however, their Run methods
must return control at RUN DT intervals.

Rule 5 A Mapl-compliant ESMF GridComp can be simple (called a leaf) or composite.

Rule 6 The component must obey all Mapl rules pertaining to its grid, as defined below
(3.2.4.3).

Rule 7 The component must obey all Mapl access rules to the IM/EX/IN states, as defined
below.

Rule 8 The MAPL GenericSetServices, MAPL GenericInitialize, and MAPL GenericFinalize
methods must be invoked once, and only once, for each instance of the gridded com-
ponent.

Rule 9 Component instances must have unique names of the form: ‘first[:last]’. Neither
first nor last name can have a colon. Example: Ens01:TURBULENCE.

The following Fortran 95 codes show simple Mapl components.

3.2.4.1 Example 1: Using the Generic Component

Mapl has built-in ESMF GridComps. The most fundamental of these is the MAPL Generic
component, whose SetServices and IRF methods we normally use in building other com-
ponents. It is possible, however, to instantiate MAPL Generic itself. Currently such an

15

instance is useful only as a null leaf component, which does nothing. Nevertheless, it is a
perfectly valid ESMF GridComp.

The following example is a main program that runs MAPL Generic for a year. It also
illustrates the basic steps that an ESMF main program (called Cap) contains. This is a
fully-compliant ESMF GridComp. It has a public SetServices taken from Mapl, and this
is its only public object (method?). Of course, it does nothing; but it can be run as a null
component anywhere an ESMF GridComp can be run. Since it uses the generic IRF methods,
it has a single stage of each. The rules about grids and states are not too relevant, but it
has a a natural grid - the ESMF Grid is assumed to be given to it when the instance of the
ESMF GridComp is created. It has IM/EX/IN states, which are silently created by the implicit
generic methods; but all three state are empty.

Program Example1

use ESMF

use MAPL_Mod, only: SetServices => MAPL_GenericSetServices

type(ESMF_GridComp) :: GC

type(ESMF_State) :: Import, Export

type(ESMF_Clock) :: Clock

type(ESMF_Time) :: StartTime

type(ESMF_Time) :: StopTime

type(ESMF_TimeInterval):: DT

integer :: RC

RC = ESMF_SUCCESS

! Initialize ESMF

!----------------

call ESMF_Initialize(defaultCalendar=ESMF_CALKIND_GREGORIAN, rc=rc)

if(rc==ESMF_FAILURE) call exit(rc)

! Initial and final time of run and time step

!--

call ESMF_TimeSet(StartTime, YY = 2007, rc=RC)

if(RC==ESMF_FAILURE) call exit(RC)

call ESMF_TimeSet(StopTime, YY = 2008, rc=RC)

if(RC==ESMF_FAILURE) call exit(RC)

call ESMF_TimeIntervalSet(DT, S=1800, rc=RC)

if(RC==ESMF_FAILURE) call exit(RC)

! Create the Clock

!-----------------

clock = ESMF_ClockCreate(name=’MyClock’, timeStep=DT, &

startTime=StartTime, stopTime=StopTime, userRC=STATUS)

if(RC==ESMF_FAILURE) call exit(RC)

! Create the gridded component

!-----------------------------

GC = ESMF_GridCompCreate(name=’ExampleGC’, rc=rc)

if(RC==ESMF_FAILURE) call exit(RC)

16

! SetServices

!------------

call ESMF_GridCompSetServices(GC, SetServices, RC)

if(RC==ESMF_FAILURE) call exit(RC)

! Initialize

!-----------

call ESMF_GridCompInitialize(GC, importState=Import, exportState=Export, clock=Clock, RC)

if(RC==ESMF_FAILURE) call exit(RC)

! Time loop

do while (.not. ESMF_ClockIsDone(Clock))

! Run

!----

call ESMF_GridCompRun(GC, importState=Import, exportState=Export, clock=Clock, userRC=RC)

if(RC==ESMF_FAILURE) call exit(RC)

! Tick the Clock

!---------------

call ESMF_ClockAdvance(Clock, rc=RC)

if(RC==ESMF_FAILURE) call exit(RC)

enddo

! Finalize grid comp

!-------------------

call ESMF_GridCompFinalize(GC, importState=Import, exportState=Export, clock=Clock, userRC=RC)

if(RC==ESMF_FAILURE) call exit(RC)

! Don’t we need to destroy the components!?!?!

!--

! Finalize ESMF

!--------------

call ESMF_Finalize (rc=rc)

if(RC==ESMF_FAILURE) call exit(RC)

! All Done

!---------

call exit(RC)

end Program Example1

3.2.4.2 Example 2: HelloWorldMod

The second example illustrates a more typical use of Mapl to help write a gridded compo-
nent.

module HelloWorldMod

! We always have this preamble

!-----------------------------

17

use ESMF

use MAPL_Mod

implicit none

! Make sure only SetServices is public.

! This is a hallmark of ESMF gridded components.

!---

private

public SetServices

contains

! a simple SetServices to register our custom

! run method (run_hello) with MAPL.

!--

subroutine SetServices(gc,rc)

! input/output parameters

!------------------------

type(ESMF_GridComp), intent(INOUT) :: gc ! gridded component

integer, optional, intent(OUT) :: rc ! return code

! register custom run method

call MAPL_GridCompSetEntryPoint(gc, ESMF_SETRUN, run_hello, rc)

!IMPORTANT step - call GenericSetServices

call MAPL_GenericSetServices(gc, rc)

end subroutine SetServices

! The Run method

!---------------

subroutine run_hello(gc, import, export, clock, rc)

! input/output parameters

!------------------------

type(ESMF_GridComp), intent(inout) :: gc ! gridden component

type(ESMF_State), intent(inout) :: import ! import state

type(ESMF_State), intent(inout) :: export ! export state

type(ESMF_Clock), intent(inout) :: clock ! the clock

integer, optional, intent(out) :: rc ! return code

! 0 - all is well

! local

!------

type(ESMF_Config) :: cf ! config

character(len=ESMF_MAXSTR) :: comp_name

real :: dt ! time step

! Get my name

!------------

call ESMF_GridCompGet(gc, name=comp_name, config=cf)

! Query configuration to get time step

!-------------------------------------

call ESMF_ConfigGetAttribute(cf, dt, label=’run_dt:’)

18

print *, ’Hello World. I am ’, trim(comp_name), &

’, and my timestep is ’,dt

! All done - successfully

!------------------------

rc = ESMF_SUCCESS

end subroutine run_hello

end module HelloWorldMod

This example needs a custom Run method (run hello). Since this method can only be reg-
istered in a SetServices that is in the module, we must also write an explicit SetServices.
Notice that the registration of the Run method is with Mapl, not directly with ESMF. The
component does not explicitly register Initialize and Finalize methods, so the generic
ones will be used. Normally, we would also register data and connectivities at this point, but
in this example, we have none. Also note that MAPL GenericSetServices is called at the
end, after all registration with Mapl is completed. We rely on MAPL GenericSetServices
to do the heavy work.

The Run method is simple, but it does illustrate that every instance of an ESMF GridComp
has a name, and the IRF methods can access it to know which instance they are working
on.

Notice also that we have assumed that there is an open configuration (ESMF Config - see
section 3.3.3) in the gridded component, from which we are getting the time step. This is also
typical of Mapl components and is crucial to the successful use of this and other examples
is the. Mapl treats the configuration in the component object like an environment from
which it can always query for predefined metadata. MAPL requires certain configuration
variables to be set in order to properly execute any application.

The situation illustrated by this example is quite common. Most simple components will
follow this template: define a custom Run method, a SetServices that registers it and calls
MAPL GenericSetServices, and default the Initialize and Finalize methods.

3.2.4.3 Additional Rules for Grids and States

Most MAPL GridComps will receive a fully populated grid from its parent. Some, however,
may need be written to receive an empty grid that they populate themselves or to replace
the grid they receive with one of their own creation.

In its current implementation, Mapl severely restricts the nature of ESMF Grids reflect-
ing in part the state of ESMF’s own development. We will discuss this at length later
(where!?!?!).

19

The following are some of the grid related rules:

Rule 10 A component’s grid must be fully formed before MAPL GenericInitialize is
invoked.

Rule 11 Once MAPL GenericInitialize is invoked, the grid may not be changed and
must remain as the instance’s ESMF Grid.

Rule 12 An instance’s grid can be either an ESMF Grid or a MAPL LocationStream that
has an associated ESMF Grid. Thus there is always an ESMF Grid associated (attached)
with each instance of a Mapl-compliant ESMF GridComp.

A component can operate on data on various grids. These can be ESMF Grids or grids
defined with the user’s own conventions and ESMF Infrasructure can be used to manipulate
this data internally. But to the outside world and to Mapl a Mapl-compliant component
should ‘look’ as though it has only one grid.

The following are the ESMF State related rules:

Rule 13 Items in the IM/EX/IN states must be one of ESMF States, ESMF Bundles or
ESMF Fields.

Rule 14 Mapl places items in the IM/EX/IN states only through appropriate ‘spec’ calls
from its SetServices.

Rule 15 All items the component places in the IM/EX/IN states must be defined on its
grid. If the grid is a MAPL LocationStream, these items can be either at locations or
on the associated ESMF Grid. Only in this sense can a component appear to expose
two grids.

Rule 16 In addition to the ESMF Internal state that Mapl places in the component, a
component can have any number of privately defined ‘internal’ states. We will
refer to these as the component’s private states.

Rule 17 The private states, together with IN, fully define the component’s instantiatable
state. Private states must, therefore, be attached to the ESMF GridComp.

Rule 18 Private states must be ‘named’ states when attached to the ESMF GridComp.
Mapl uses the unnamed internal state in the component for its own purposes.

Rule 19 Items in the IM/EX/IN states may have Mapl and user attributes.

Rule 20 Items in the IN state can be given a FRIENDLY TO Mapl attribute that consists
of a list of other component’s names. Mapl then places these items in the component’s
EX state, and it is an error to add another item with the same name to the Export.
Why don’t we make this a regular EX state!?!?!

20

Rule 21 Items in the IM state are ‘read-only’ to the component, unless the component’s
name appears in the item’s FRIENDLY TO attribute.

Rule 22 Items in the EX state can be assumed to be ‘read-only’ to other components,
unless a non-empty FRIENDLY TO is present.

Rule 23 Components can only create or modify the FRIENDLY TO attribute of items in
its Import state.

Rule 24 Values of all Mapl attributes can be set only in SetServices.

Note that the restriction on items being on the component’s grid applies only to the items
explicitly placed in the states by the component; Mapl itself may place other items in these
states that are not ‘visible’ to the component. It is in this sense that the component ‘looks’
as though it has a single grid, even when its children use different grids.

3.2.5 The recipe for writing a MAPL GridComp

Writing an ESMF GridComp consists of writing a SetServices and at least one phase of each
of the registered IRF methods. Mapl provides a recipe for each of these tasks. We will
focus first on the writing of a leaf component (an ESMF GridComp that is a simple container
for user code) and defer the discussion of how to extend the recipe to composite components
and to putting together hierarchies to the Mapl Connect section 3.3.

3.2.5.1 Writing a SetServices

Every non-trivial MAPL GridComp has a SetServices from which MAPL GenericSetServices
is called, as illustrated in Example 2 (3.2.4.2). In this section we provide a complete recipe
for writing SetServices and explain the role of MAPL GenericSetServices (for variable
declarations, please refer to the actual code).

The minimum we must do in SetServices is registering the private IRF methods (Run in
Example 2) and then call MAPL GenericSetServices. Everything else is optional. The
following is a complete list in the order in which they would normally appear:

1. Get instance name and set-up traceback handle (Mapl Utils: only used for optional
error handling)

Iam = "SetServices"
call ESMF_GridCompGet(gc, name=COMP_NAME, RC=STATUS)
Iam = trim(COMP_NAME) // Iam

21

2. If using a private state, allocate it and put it in the gridded component with a unique
name. Why can’t we just use an IN state!?!?!

allocate(dyn_internal_state, stat=status)
wrap%dyn_state => dyn_internal_state
call ESMF_UserCompSetInternalState (gc,’FVstate’,wrap,status)

3. Register any custom IRF methods with Mapl . Mapl will register them with ESMF.
This step is present in practically all components.

call MAPL_GridCompSetEntryPoint (gc, ESMF_SETINIT, Initialize, rc=status)
call MAPL_GridCompSetEntryPoint (gc, ESMF_SETRUN, Run1, rc=status)
call MAPL_GridCompSetEntryPoint (gc, ESMF_SETRUN, Run2, rc=status)
call MAPL_GridCompSetEntryPoint (gc, ESMF_SETFINAL, Finalize, rc=status)
call MAPL_GridCompSetEntryPoint (gc, ESMF_SETREADRESTART, Coldstart, rc=status)

4. Set Data Services for the gridded component. Data services are the heart of Mapl
and practically all components will have to do some state description. An exception
would be a composite component that serves only as a container for its children. We
explain the setting of data services in detail below (3.2.5.1.2).

call MAPL_AddImportSpec (gc, &
SHORT_NAME = ’DUDT’, &
LONG_NAME = ’eastward_wind_tendency’, &
UNITS = ’m s-2’, &
DIMS = MAPL_DimsHorzVert, &
VLOCATION = MAPL_VLocationCenter, &
RC=STATUS)

Similarly for Export and Internal variables.

5. Call MAPL GenericSetServices. This is required. We discuss what it does next
(3.2.5.1.1).

call MAPL_GenericSetServices(GC, RC=STATUS)

6. Set the Profiling timers (Mapl Utils). This, of course, is optional.

call MAPL_TimerAdd(GC, name="INITIALIZE", RC=STATUS)

For an example of a SetServices routine, please refer to section 3.10.

22

3.2.5.1.1 What does MAPL GenericSetServices do?

As we showed in Example 1 (3.2.4.1), MAPL GenericSetServices can be used as a compo-
nent’s SetServices, but this is not particularly useful. Its typical use is as a set-up routine
for Mapl and is one of the last things called from the component’s own SetServices (step
5 above). MAPL GenericSetServices performs the following tasks:

• If the Mapl object does not exist in the component, it allocates it and places it in
the component. Usually the object already exists at this point.

• Sets any of ESMF GridComp’s IRF methods that have not been registered to the generic
versions.

• Deals with the children. This is discussed further in Mapl Connect 3.3.

3.2.5.1.2 Data Services

A crucial aspect of writing a Mapl component is describing the three states (IM/EX/IN).
These are all ESMF States. The IM/EX states are those passed in the calls to the IRF meth-
ods. The IN state is attached to the Mapl object by Mapl. In SetServices we must
describe all items in all the three states. This will allow Mapl to create, initialze, and
otherwise manipulate these data.

Mapl assumes that items in these states are either ESMF Fields or ESMF Bundles. Each
item is described by a call to MAPL AddxxxSpec, where ‘xxx’ stands for either Import/Export
or Internal. These calls do not modify these states or create the items; they merely update
tables of item specifications for the three states. The interface of MAPL AddInternalSpec
is as follows:

subroutine MAPL_AddInternalSpec(GC, &
SHORT_NAME, &
LONG_NAME, &
UNITS, &
DIMS, &
VLOCATION, &
DATATYPE, &
NUM_SUBTITILES, &
REFRESH_INTERVAL, &
AVERAGING_INTERVAL, &
DEFAULT, &
RESTART, &
HALOWIDTH, &
PRECISION, &
FRIENDLYTO, &

23

ADD2EXPORT, &
ATTR_RNAMES, &
ATTR_INAMES, &
ATTR_RVALUES, &
ATTR_IVALUES, &
UNGRIDDED_DIMS, &
RC)

type (ESMF_GridComp) , intent(INOUT) :: GC
character (len=*) , intent(IN) :: SHORT_NAME
character (len=*) , optional , intent(IN) :: LONG_NAME
character (len=*) , optional , intent(IN) :: UNITS
integer , optional , intent(IN) :: DIMS
integer , optional , intent(IN) :: DATATYPE
integer , optional , intent(IN) :: VLOCATION
integer , optional , intent(IN) :: NUM_SUBTILES
integer , optional , intent(IN) :: REFRESH_INTERVAL
integer , optional , intent(IN) :: AVERAGING_INTERVAL
integer , optional , intent(IN) :: PRECISION
real , optional , intent(IN) :: DEFAULT
logical , optional , intent(IN) :: RESTART
character (len=*) , optional , intent(IN) :: HALOWIDTH
character (len=*) , optional , intent(IN) :: FRIENDLYTO
logical , optional , intent(IN) :: ADD2EXPORT
character (len=*) , optional , intent(IN) :: ATTR_INAMES(:)
character (len=*) , optional , intent(IN) :: ATTR_RNAMES(:)
integer , optional , intent(IN) :: ATTR_IVALUES(:)
real , optional , intent(IN) :: ATTR_RVALUES(:)
integer , optional , intent(IN) :: UNGRIDDED_DIMS(:)
integer , optional , intent(OUT) :: RC

Only the ESMF GridComp object GC and the SHORT NAME are required. The latter is the
handle used to access the variable; it is also the name used for the variable by Mapl in
checkpoint files. For a description of the remaining optional arguments (as well as interfaces
to MAPL AddImportSpec and MAPL ExportSpec), please see the Mapl Reference Manual.

3.2.5.2 Writing an Initialize Method

Every Mapl component must make a call to MAPL GenericInitialize. This can be done
by letting the method default or by writing a component-specific Initialize method that
invokes MAPL GenericInitialize. In this section we provide a complete recipe for writing
an Initialize routine and explain exactly what MAPL GenericInitialize does.

24

The main reason to write a component-specific Initalize is to handle a private internal
state. If all internal state variables can be put in the Mapl IN and checkpointed, using
MAPL GenericInitialize should suffice, at least for a simple component. A composite
component may have other considerations; these will be discussed in later sections.

The following is a complete recipe in the order they would normally appear. Add com-
mands for each step!?!?!

1. Get the instance name and setup traceback handle (Mapl Utils: used for optional
error handling)

Iam = "Initialize"
call ESMF_GridCompGet(GC, name=COMP_NAME, CONFIG=CF, RC=STATUS)
Iam = trim(COMP_NAME) // Iam

2. Get the Mapl object from the ESMF GridComp

It will almost certainly be convenient to query this object during Initializa-
tion.

call MAPL_GetObjectFromGC(GC, MAPL, RC=STATUS)

3. If profiling, turn on timer (Mapl Utils)

call MAPL_TimerOn(MAPL,"TOTAL")
call MAPL_TimerOn(MAPL,"INITIALIZE")

4. If you will use the configuration, get it from the ESMF GridComp

The configuration is to a component what the environment is to a UNIX
process. We use it to keep all parameters, and so it is likely to be needed in
Initalize. ‘Resource’ in MAPL parlance is the same as ‘Attribute’ in ESMF.

! can use call ESMF_ConfigGetAttribute(cf, ...) but
! the preferred way is the following
!--
call MAPL_GetResource(MAPL, ...)

5. Get the component’s private Internal state from the ESMF GridComp

If you are writing your own Initialize you will almost certainly be using a
private internal state.

call ESMF_UserCompGetInternalState(GC, ’FVstate’, wrap, status)
state => wrap%dyn_state

25

6. If you are changing the grid, it has to be done before invoking MAPL GenericInitialize.

Remember, by default the component’s natural grid will be the one it was
given at creation. If an Internal and/or an Import state is being restarted
(as described in the next section - where!?!?!), the grids on those restarts
will overide whatever is present when MAPL GenericInitialize is called in
the next step. So it only makes sense to change the grid if you are not doing
restarts in MAPL GenericInitialize. After returning from MAPL GenericInitialize,
the natural grid cannot be changed.

7. Invoke MAPL GenericInitialize

This will do the automatic state initializations as described below. In the
case of a composite component, it will also initialize the children.

call MAPL_GenericInitialize(GC, IMPORT, EXPORT, CLOCK, RC=STATUS)

8. If you have put items that need to be explicitly initialized in the Mapl Internal
state, get it from the Mapl object

Items in the Mapl Internal state that were checkpointed will be restored by
MAPL GenericInitialize; other items will be set to their DEFAULT value.
We need access to Internal only if we wish to overide these in Initialize.
An example of this would be setting static arrays, like map factors, Coriolis,
etc.

9. Query the Mapl object for information you need to do initialization

You probably need to know what the world looks like, so get LATS and LONS.

10. Query the configuration for parameters you need to do initialization

11. Get pointers from the Mapl Internal and/or the private internal states.

These are the quantities you need to initialize.

12. Do the Initialization

For Internal items, you are overriding Mapl’s initialization, which was
either from a restart or a default; for a private state you are on your own.

13. If you are profiling, turn off timer

For an example of an Initialize routine, please refer to section 3.10.

26

3.2.5.2.1 What does MAPL GenericInitialize do?

MAPL GenericInitialize does most of the instance-specific initializations of the Mapl
objects. It also creates, and possibly allocates and initializes, items in the IM/EX/IN states.
MAPL GenericInitialize also makes the final decision on what will be the natural grid.
And, as is the case for all generic IRF methods, it calls the children’s Initialize. The
following list discusses these tasks in more detail: where is the list!?!?!

3.2.5.3 Writing a Finalize Method

Finalize parallels the Initialize. It is usually only needed if there is a private internal state.

3.2.5.3.1 What does MAPL GenericFinalize do?

MAPL GenericFinalize does most of the instance-specific finalizations of the Mapl objects.
It checkpoints the Import and Export states if a checkpoint file has been provided. It also
destroys, and possibly deallocates items in the IM/EX(?)/IN states. MAPL GenericFinalize
also calls the children’s Finalize routines.

3.3 Building complex applications: Mapl Connect

Mapl adopts ESMF’s natural hierarchical topology for component connectivity, follow-
ing the model illustrated in Figure 1. The leaf components (no children: at the bot-
tom of the figure) contain the bulk of the computational code. These are things like
physical parameterizations or dynamical cores, and they are grouped in composite com-
ponents (their parents). In a typical application, a composite component (parent) spawns
other (children) components. In our Mapl example (3.10), the parent gridded component
GEOS AgcmSimpleGridComp spawns two children components FVdycore GridCompMod and
GEOS hsGridCompMod. The registration of the children with Mapl is accomplished by the
following calls in the parent’s SetServices.

dyn = MAPL_AddChild(gc, name=’FVDYNAMICS’, ss=DYN_SetServices, rc=status)
phs = MAPL_AddChild(gc, name=’HSPHYSICS’, ss=PHS_SetServices, rc=status)

Each parent’s constituent components (its children) can then be connected to each other by
ESMF couplers (ESMF CplComp). It is in these couplers that the more automatable coupling
functions, such as grid transformation, accumulation, etc., are performed. Note that in this
hierarchical scheme, all couplings - whether physical or automatable - occur between siblings.
This simplifies the placement of couplers, which is important since we want this to be done
automatically by Mapl, but it does require some means of making connections between

27

cousins. This is done by adopting some rules that define the parent-child relationship. Since
a parent ‘owns’ its children components and their IM/EX states (it declares them!?!?!), it has
access to them. In Mapl, we take advantage of this by having the parent explicitly declare
what connections it wants between its children’s Import and Export states. The following
call, made by the parent component, would let Mapl know that it needs certain connectivity
services between these children; Mapl will provide these by automatically generating the
appropriate couplers (ESMF CplComp) (Or does it just swap pointers!?!?!), extracting
some of the needed information from the data services provided by the children. Once
again, this is done in SetServices.

call MAPL_AddConnectivity &
(GC, &
SHORT_NAME = (/ ’DUDT’, ’DVDT’, ’DTDT’ /), &
SRC_ID = PHS, &
DST_ID = DYN, &
RC=STATUS)

Here, DUDT, DVDT and DTDT are Import states of FVdycore GridComp and Export states of
GEOS hsGridComp. After all connections between the children are processed, their Import
states may still contain some unsatisfied items (such as those that would be provided by
cousins). Mapl adds these to the parent’s Import state. This occurs recursively up the hi-
erarchy until, in a well-coupled application, all Imports are satisfied. Unresolved Imports
at the parent level have to be terminated. In the Held-Suarez example, the child DYN of
the parent component GEOS AgcmSimple has unresolved Imports PHIS, DPEDT which are
terminated in the SetServices routine of GEOS AgcmSimple:

call MAPL_TerminateImport(GC, SHORT_NAME = (/PHIS ,DPEDT/), &
CHILD = DYN, RC=STATUS)

In order to have the cousin’s Export available to the parents, Mapl places all of the
children’s Exports in the parent’s Export state. This also continues recursively up the
hierarchy.

3.3.1 What MAPL GenericSetServices Does with the Children

• Allocates an ESMF GridComp and an Import and Export state for each child

• Creates each child’s ESMF GridComp using the inherited grid and configuration. The
ith child is named GCNames(I).

• Creates each child’s Import and Export states. These are named GCNames(I)//" IMPORT"
and GCNames(I)//" EXPORT"

28

• Invokes each child’s SetServices. [These are chosen from the five possible externals
specified, depending on the value of SSptr(I)(!?!?!). By convention, if SSptr is not
present, there can be at most as many children as optional externals, and these are
associated in the order they appear in GCNames and the argument list] - EXPLAIN.

• ‘Wires’ the children. This resolves all child Imports that are satisfied by siblings. All
such connections must have been added explicitly in SetServices.

• Propagates each child’s Export state to the component’s Export state.

• Propagate the childrens’s unresolved Imports to the component’s Import state.

3.3.2 Rules for Mapl Application

Rule 25 Every Mapl application will have one and only one Root component, which will
be an ancestor of every component except the History component.

Rule 26 The Cap component is the main program; it has no parent and exactly three chil-
dren: Root, ExtData, and History. The application component creates and initializes
the configuration.

3.3.3 Configuration

Mapl requires that the application’s configuration be propagated down from parents to
children, and that it be present in the component as soon as the component is created. It
effectively treats the configuration as though it was a UNIX environment available to all
components in an application.

The behavior of an application is controlled through three resource (or configuration) files.
The MAPL Cap (main program) opens the configuration files for itself and its three chil-
dren (Root and History). These have the default names CAP.rc, ROOT.rc, ExtData.rc,
and HISTORY.rc. They must be present in the run directory at run time. The name of
MAPL Cap’s own resource file is fixed as Cap.rc, since this is the resource from which the
application ‘boots up’. The other two may be renamed in Cap.rc. Table (3.1) lists the
resources in the Cap.rc.

29

Name Description Units Default

CF FILE: Name of ROOT’s config file none ‘Root.rc’
CF FILE: Name of HISTORY’s config file none ‘HISTORY.rc’
TICK FIRST: Determines when clock is advanced 1 or 0 none
BEG YY: Beginning year (integer) year 1
BEG MM: Beginning month (integer 1-12) month 1
BEG DD: Beginning day of month (integer 1-31) day 1
BEG H: Beginning hour of day (integer 0-23) hour 0
BEG M: Beginning minute (integer 0-59) minute 0
BEG S: Beginning second (integer 0-59) second 0
END YY: Ending year (integer) year 1
END MM: Ending month (integer 1-12) month 1
END DD: Ending day of month (integer 1-31) day 1
END H: Ending hour of day (integer 0-23) hour 0
END M: Ending minute (integer 0-59) minute 0
END S: Ending second (integer 0-59) second 0
RUN DT: App Clock Interval (the Heartbeat) second none
LATLON: 1 -> regular lat-lon; 0 -> custom

grid
0 or 1 1

NX: Processing elements in 1st dimension none 1
NY: Processing elements in 2nd dimension none 1
IM WORLD: Grid size in 1st dimension none none
JM WORLD: Grid size in 2nd dimension none none
LM: Grid size in 3rd dimension none 1
GRIDNAME: Optional grid name none ‘APPGRID’
IMS: Gridpoints in each PE along 1st

dimension
none IMS

JMS: Gridpoints in each PE along 2nd
dimension

none JMS

POLEEDGE: 1->gridedge at pole; 0->gridpoint at
pole

0 or 1 0

LON0: Longituce of center of first gridbox degree -90.

Table 3.1: List of resources in Cap.rc

An example configuration file (CAP.rc) for Example 2 (3.2.4.2) is:

NX: 2

NY: 2

IM: 72

JM: 46

LM: 72

BEG_YY: 1991

BEG_MM: 03

BEG_DD: 01

30

BEG_H: 0

END_YY: 1991

END_MM: 03

END_DD: 02

END_H: 0

RUN_DT: 1800

ROOT_RC_FILE: HelloWorld.rc

An example HelloWorld.rc configuration file is simply:

RUN_DT: 1800

This would perform a one day simulation with 30 minute time steps on a 4◦×5◦ grid, using
a 2× 2 decomposition element layout.

For an ESMF GridComp, the configuration may be obtained by querying using the standard
ESMF interface, as shown in the run method of Example 2 (3.2.4.2). It can also be queried
through the Mapl object by calling MAPL GetResource. This is the preferred way. When
the configuration is queried this way, Mapl first tries to match a label that has been made
instance-specific by prepending the instance’s full name and an underscore to the specified
label; in Example 2, Mapl would first look for trim(COMP NAME)//’ DT:’. If this is not
found, it would then look for a type-specific label by prepending only the last name, if the
instance has one. If this fails, it would look for the unqualified label, DT:; finally, if this
also fails, it would set it to the default value, which in the example is the application’s time
step, RUN DT.

3.4 Doing Diagnostics: Mapl History

MAPL HistoryGridCompMod is an internal MAPL gridded component used to manange out-
put streams from a MAPL hierarchy. It writes Fields in the Export states of all MAPL
components in a hierarchy to file collections during the course of a run. It also has the some
limited capability to interpolate the fields horizontally and/or vertically beofore outputing
them.

It is usually one of the two gridded components in the “cap” or main program of a MAPL
application, the other being the root of the MAPL hierarchy it is servicing. It is instanciated
and all its registered methods are run automatically by MAPL Cap, if that is used. If writing
a custom cap, MAPL HistoryGridCompMod’s SetServices can be called anytime after ESMF
is initialized. Its Initialize method should be executed before entering the time loop, and its
Run method at the bottom of each time loop, after advancing the Clock. Finalize simply
cleans-up memory.

The component has no true export state, since its products are diagnostic file collections.
It does have both Import and Internal states, which can be treated as in any other MAPL

31

component, but it generally makes no sense to checkpoint and restart these.

The behavior of MAPL HistoryGridCompMod is controlled through its configuration, which
as in any MAPL gridded component, is open and available in the GC. It is placed there by
the cap and usually contained in a HISTORY.rc file.

MAPL HistoryGridCompMod uses MAPL CFIO for creating and writing its files; it thus obeys all
MAPL CFIO rules. In particular, an application can write either Grads style flat files together
with the Grads .ctl file description files, or one of two self-describing format (netcdf or HDF),
which ever is linked with the application.

Each collection to be produced is described in the HISTORY.rc file and can have the
following properties:

• Its fields may be ”instantaneous” or ”time-averaged”, but all fields within a collection
use the same time discretization.

• A beginning and an end time may be specified for each collection .

• Collections are a set of files with a common name template.

• Files in a collection have a fixed number of time groups in them.

• Data in each time group are ”time-stamped”; for time-averaged data, the center of
the averaging period is used.

• Files in a collection can have time-templated names. The template values correspond
to the times on the first group in the file.

The body of the HISTORY.rc file usually begins with two character string attributes under
the config labels EXPID: and EXPDSC: that are identifiers for the full set of collections. These
are followed by a list of collection names under the config label COLLECTIONS:. Note the
conventional use of colons to terminate labels in the HISTORY.rc.

The remainder of the file contains the attributes for each collection. Attribute labels consist
of the attribute name with the collection name prepended; the two are separated by a ’.’.

Attributes are listed below. A special attribute is collection.fields: which is the label
for the list of fields that will be in the collection. Each item (line) in the field list consists
of a comma separated list with the field’s name (as it appears in the corresponding ESMF
field in the EXPORT of the component), the name of the component that produces it, and
the alias to use for it in the file. The alias may be omitted, in which case it defaults to the
true name.

Files in a collection are named using the collection name, the template attribute described
below, and the EXDID: attribute value. A filename extension may also be added to identify
the type of file (e.g., .nc4).

32

[expid.]collection[.template][.ext]

The extension is not added automatically, it is up to the user to add the appropriate one.
If the format is CFIO or CFIOasync and the extension is absent or .nc a NETCDF4 classic
file will be produced. Is the extentions is .nc4 a NETCDF4 file will be produced. If it is
”flat”, the data files have whatever extension you provide and the “control file” has the .ctl
extension, but with no template. The expid is always prepended, unless it is an empty
string.

The following are the valid collection attributes:

template Character string defining the time stamping template that is appended
to collection to create a particular file name. The template uses GrADS
convensions. The default value depends on the duration of the file.

descr Character string describing the collection. Defaults to ‘expdsc’.

format Character string to select file format (”CFIO”, ”CFIOasync”, ”flat”).
”CFIO” uses MAPL CFIO and produces netcdf output. ”CFIOasync” uses
MAPL CFIO but delegates the actual I/O to the MAPL CFIOServer (see MAPL CFIOServer
documenation for details). Default = ”flat”.

frequency Integer (HHHHMMSS) for the frequency of time groups in the col-
lection. Default = 060000.

mode Character string equal to ‘instantaneous’ or ‘time-averaged’. Default =
’instantaneous’.

acc interval Integer (HHHHMMSS) for the acculation interval (≤ frequency)
for time-averaged diagnostics. Default = frequency; ignored if mode is ‘instan-
taneous’.

ref date Integer (YYYYMMDD) reference date for frquency; also the beginning
date for the collection. Default is the Start date on the Clock.

ref time Integer (HHMMSS) Same a ref date.

end date Integer (YYYYMMDD) ending date to stop diagnostic output. De-
fault: no end

end time Integer (HHMMSS) ending time to stop diagnostic output. Default:
no end.

duration Integer (HHHHMMSS) for the duration of each file. Default = 00000000
(everything in one file).

resolution Optional resolution (IM JM) for the ouput stream. Transforms be-
twee two regulate LogRect grid in index space. Default is the native resolution.

33

xyoffset Optional Flag for output grid offset when interpolating. Must be be-
tween 0 and 3. (Cryptic Meaning: 0:DcPc, 1:DePc, 2:DcPe, 3:DePe). Ignored
when resolution results in no interpolation (native). Default: 0 (DatelinCen-
terPoleCenter).

levels Optional list of output levels (Default is all levels on Native Grid). If
vvars is not specified, these are layer indeces. Otherwise see vvars, vunits,
vscale.

vvars Optional field to use as the vertical coordinate and functional form of
vertical interpolation. A second argument specifies the component the field
comes from. Example 1: the entry ’log(PLE)’,’DYN’ uses PLE from the DYN
component as the vertical coordinate and interpolates to levels linearly in its
log. Example 2: ’THETA’,’DYN’ a way of producing isentropic output. Only
log(·), pow(·,real number) and straight linear interpolation are supported.

vunit Character string to use for units attribute of the vertical coordinate in
file. The default is the MAPL CFIO default. This affects only the name in the
file. It does not do the conversion. See vscale

vscale Optional Scaling to convert VVARS units to VUNIT units. Default: no
conversion.

regrid exch Name of the exchange grid that can be used for interpolation be-
tween two LogRect grids or from a tile grid to a LogRect grid. Default: no
exchange grid interpolation. irregular grid.

regrid name Name of the Log-Rect grid to interpolate to when going from a tile
to Field to a gridde output. regrid exch must be set, otherwise it is ignored.

conservative Set to a non-zero integer to turn on conservative regridding when
going from a native cube-sphere grid to lat-lon output. Default: 0

deflate Set deflate level (0-9) of NETCDF output when format is CFIO or
CFIOasync. Default: 0

subset Optional subset (lonMin lonMax latMin latMax) for the output when
performing non-conservative cube-sphere to lat-lon regridding of the output.

chunksize Optional user specified chunking of NETCDF output when format
is CFIO or CFIOasync, (Lon chunksize, Lat chunksize, Lev chunksize, Time
chunksize)

The following is a sample HISORY.rc take from the FV HeldSuarez test.

EXPID: fvhs_example
EXPDSC: fvhs_(ESMF07_EXAMPLE)_5x4_Deg

34

COLLECTIONS:
’dynamics_vars_eta’
’dynamics_vars_p’
::

dynamics_vars_eta.template: ’%y4%m2%d2_%h2%n2z’,
dynamics_vars_eta.format: ’CFIO’,
dynamics_vars_eta.frequency: 240000,
dynamics_vars_eta.duration: 240000,
dynamics_vars_eta.fields: ’T_EQ’ , ’HSPHYSICS’ ,

’U’ , ’FVDYNAMICS’ ,
’V’ , ’FVDYNAMICS’ ,
’T’ , ’FVDYNAMICS’ ,
’PLE’ , ’FVDYNAMICS’ ,

::

dynamics_vars_p.template: ’%y4%m2%d2_%h2%n2z’,
dynamics_vars_p.format: ’flat’,
dynamics_vars_p.frequency: 240000,
dynamics_vars_p.duration: 240000,
dynamics_vars_p.vscale: 100.0,
dynamics_vars_p.vunit: ’hPa’,
dynamics_vars_p.vvars: ’log(PLE)’ , ’FVDYNAMICS’ ,
dynamics_vars_p.levels: 1000 900 850 750 500 300 250 150 100 70

50 30 20 10 7 5 2 1 0.7, (SHOULD BE IN ONE LINE??)
dynamics_vars_p.fields: ’T_EQ’ , ’HSPHYSICS’ ,

’U’ , ’FVDYNAMICS’ ,
’V’ , ’FVDYNAMICS’ ,
’T’ , ’FVDYNAMICS’ ,
’PLE’ , ’FVDYNAMICS’ ,

::

In addition to fields in the EXPORT state of components in the MAPL hierarchy, the user
may also specify new fields that will be evaluted using the MAPL arithmetic parser. In
place of the variable name when defining fields the user enters an expression that will be
evaluated by the MAPL parser (see the documentation for the parser to learn what legal
expressions are). In the expression the user can use any field in the collection as a variable
in the expression, provided it is an actual field in a MAPL component. In other words
new arithemtic fields CAN NOT be used as variables in other expressions in the collection.

35

On this line the user must specify two more pieces of information. A component name is
needed just as in the real fields but this is just a placeholder and will be ignored. Finally a
name for the new field is needed. This will be the name of the variable on the resultant file
produced by MAPL HistoryGridCompMod. An example with some comments below makes
this clear:

EXPID: fvhs_example
EXPDSC: fvhs_(ESMF07_EXAMPLE)_5x4_Deg

COLLECTIONS:
’dynamics_vars_eta’
::

dynamics_vars_eta.template: ’%y4%m2%d2_%h2%n2z’,
dynamics_vars_eta.format: ’CFIO’,
dynamics_vars_eta.frequency: 240000,
dynamics_vars_eta.duration: 240000,
dynamics_vars_eta.fields: ’T_EQ’ , ’HSPHYSICS’ ,

’U’ , ’FVDYNAMICS’ ,
’V’ , ’FVDYNAMICS’ ,
’sqrt(U*U+V*V)’, ’FVDYNAMCIS’, ’Wind_Magnitude’,
’U*2.0e2’, ’FVDYNAMICS’, ’U_times_two’,

::
T_EQ, U, and V are actual fields in the export state of MAPL components.
note two new fields that are functions of the real fields in the collection.
note that in the line ’sqrt(U*U+V*V)’, ’FVDYNAMCIS’, ’Wind_Magnitude’,
the FVDYNAMICS entry is just a placeholder. It is not used.
it would be illegal to use Wind_Magnitude in an expression as a variable.

3.5 Doing Diagnostics Asynchronously: Mapl CFIOServer

The MAPL CFIOServer is a MAPL component that may run concurrently with the GEOS5
model. The server provides a capability to offload I/O in MAPL History (via CFIO of
course) to special nodes that have been set aside for I/O rather than performing the I/O on
the nodes running the GEOS5 model as is normally done. Essentially it allows I/O to be
performed asynchronously with the model computation assuming it is used properly. The
I/O server is started from MAPL Cap where the global mpi communicator is split. Some
processes will run the model as normal and others will run the I/O server, at the discretion
of the user. The advantage here is that computation can be overlapped with the I/O
rather than having to wait for the History to finish before going on to the next step. The
MAPL CFIOServer runs a master process that continually pulls for I/O requests coming
from MAPL History to use the I/O server to process a collection. All other processes on

36

the I/O server are considered ”workers“. If it receives a request then a worker process on
the server gets assigned to handle this collection. If no workers are free the request will
block in MAPL History until one becomes free. When CFIO is run the data is sent to the
worker process on the I/O server rather than written by CFIO. The data on the I/O server
is not immediately written but buffered in memory until all levels of the collection have
been received. As soon as CFIO has sent all the data to the MAPL CFIOServer the model
is free to leave MAPL History and to go on to the next model timestep, independent of any
I/O occuring on the server.

The I/O server is normally turned off by default. To use it the user must do three things.
They must supply a namelist file to start the server and control the relative number of nodes
being dedicated to the model and the I/O server. Additionally it must be specified in the
History.rc file that the collection will be written with the I/O server. This is accomplished
by changing the format keyword of the collection from ”CFIO“ to ”CFIOasync“. Not all
collections need to be written with the I/O server. If the format is still ”CFIO“ and the
I/O server has been started the I/O proceeds as normal. Finally the model must be started
with a number of processors greater than the product of the layout as it normally would be.
For example if the layout is NX = 4 and NY = 24, the GEOS executable would be started
on 96 processors. If you want to run the I/O server with this layout you would need to
start the model on more than 96 processors, consistent with the namelist file. The namelist
file must be named ioserver.nml and has the following format:

&ioserver
nnodes = 24 ! number of nodes for used for the model
CoresPerNode = 16 ! cores per node
MaxMem = 26000 ! maximum memory that can be used per node on io server in megabytes
/

The first line of the namelist file is the number of nodes that will be used to run the model
(NX*NY). Next you must specify the number of cores per node you will be running on.
Finally you must specify the maximum memory that can be used per node on the I/O server
in megabytes. The I/O server is run on any extra nodes.

The following are some things to consider to make efficient use of the I/O server. The first
consideration is that for small jobs, the I/O server is almost certainly not efficient. The
reason is that any nodes used by the I/O server could always be used to run the model
itself. The incremental speedup when using these nodes for the full model is probably greater
than devoting them to speedup just the I/O. Only testing can tell you this. Assuming your
problem is I/O bound then make sure the following is true to see the full benefits. First
devote sufficient number of nodes such that each time History runs you have at least as
many workers as collections and that all the data to be written in a step can be buffered in
memory on the I/O nodes. Ideally after History runs and sends the data to the I/O nodes,
by the time History runs again the I/O should have occured on the I/O nodes. If any of
these are not true you could run into a case where History will have to wait for a free worker
on the I/O server, thus negating the purpose of the I/O server.

37

3.6 Connecting Import Fields to Data on File: Mapl ExtData

MAPL ExtDataGridCompMod is an internal MAPL gridded component used to fulfill imports
fields in a MAPL hierarchy from netcdf files on disk. It is usually one of the three gridded
components in the “cap” or main program of a MAPL application, the others being the
root of the MAPL hierarchy it is servicing and MAPL HistoryGridCompMod. It is instan-
ciated and all its registered methods are run automatically by MAPL Cap, if that is used.
MAPL ExtDataGridCompMod will provide data to fields in the Import states of MAPL com-
ponents that are not satisfied by a MAPL AddConnectivity call in the MAPL hierarchy.
In a MAPL application fields added to the Import state of a component are passed up
the MAPL hierarchy looking for a connectivity to another component that will provide
data to fill the import. If a connectivity is not found these fields will eventually reach the
”cap“. At this point any fields that have not have their connectivity satisfied are passed to
the MAPL ExtDataGridCompMod through its Export state. MAPL ExtDataGridCompMod is in
essence a provider of last resort for Import fields that need to be filled with data.

The user provides a resource file available to the MAPL ExtDataGridCompMod GC. At its
heart this resource file provides a connection between a field name and a variable name
in a netcdf file on disk. The component receives a list of fields that need to be filled and
parses the resource file to determine if MAPL ExtDataGridCompMod can fill a variable of that
name. We will refer to each field name-file variable combination as a primary export. Each
primary export is an announcment that MAPL ExtDataGridCompMod is capable of filling a
field named A with data contained in variable B on file xyz. Note that the field name in
each primary export does not need to actually be a field that needs to be filled by the
model. The component only processes primary exports that are needed The resource file
should be viewed as an anncountment of what MAPL ExtDataGridCompMod can provide. In
addition to simply announcing what MAPL ExtDataGridCompMod can provide the user can
specify other information such as how frequently to update the data from disk. This could
be at every step, just once when starting the model run, or at a particular time each days.
MAPL ExtDataGridCompMod also allows data to be shifted and scaled.

MAPL ExtDataGridCompMod uses MAPL CFIO to perform the actual file IO and thus the IO
capabilities are limited to files MAPL CFIO is capable of reading.

MAPL ExtDataGridCompMod provides an additional method to fill fields. The user can spec-
ify any number of derived exports. Each derived export should once again be viewed as
an announcement that MAPL ExtDataGridCompMod has the capability to fill a field with a
given name. Instead of the data coming from disk now the user provides a mathematical
expression used to evaluate the field which could include fields from the primary exports.
The function is any character string that obeys the rules of the MAPL NewArthParserMod.
Any primary export can be used as a variable in the expression, regardless of whether that
particular primary export is needed to fulfill an import. Care must be taken however to
ensure that the fields are conformal (i.e. on the same grid). For example each field in the
expression must have the same number of levels. Likewise attempting to fill a 2D field from
a 3D field is nonsensical (see the description of MAPL NewArthParserMod for an exception).

38

Any derived exports not needed to fulfill a field are ignored when processing the resource
file. As a simple example suppose we have two primary exports with field names A and B.
We could define a derived export C that is the sum of A and B.

Finally the component provides the user the capability of creating masks based on a Lat-
Lon bounding box. The resulting mask is a real value inside the box and another outside
the box. The mask is genereated when the component is initialized and my be used in
subsequent derived expressions.

The ExtData.rc file has the following structure. Each entry for the primary exports, derived
exports, or mask entry with space separated arguements.

PrimaryExports:
field_name Units field_dims level_type climatology

refresh_template shift scale Name_On_File FileTemplate
reference_time frequency_units frequency

::
Masks::
mask_name mask_function
::
the only currently supported mask function is the bounding box called as
bbox(field_name,lat_min,lat_max,lon_min,lon_max,real_in,real_out)
field_name is a field_name from the primary export list the function will
use the grid from this field as the grid of the new maks we create
lat_min,lat_max, lon_min, and lon_max are the corners of the box
a real number (see mapl_parser for legal syntax for this). Inside the box
the mask will be this number. If it is set to "undef" then the value will
be MAPL_Undef
a real number, same as above but mask will be this number outside of box
DerivedExports::
field_name expression refresh_template
::

Currently for the primary exports, the last 3 keywords in each entry are optional, however
all 3 must be specified if used.

The following is a description of a primary export entry:

field name Name of the field to be filled. This should be the same name as the field in the
Import state MAPL ExtDataGridCompMod is attempting to fill.

Units Units - this is a place holder for the time being and while text must be there is not
used

39

field dims Field dimension - ’xyz’ if 3D and ’xy’ if 2D

level type ’c’ if MAPL VLocationCenter and ’e’ if MAPL VlocationEdge ’NA’ if 2D

climatology ’Y’ if variable represents climatological data. ’N’ if not.

refresh template Refresh template. See section on the refresh template below for more
details and function.

shift number to shift data, currently the data is always shifted so enter 0.0 if you want no
shifting

scale number to scale data, currently the data is always scaled so enter 1.0 if you want no
scaling

name on file name of the variable on the file

FileTemplate The full path to the file. The actual filename can be the real file name or a
grads style template. In addition you can simply set the import to a constant by specifying
the entry as /dev/null:real constant. if no constant is specified after /dev/null with the
colon the import is set to zero.

reference time Reference time in the form YYYY-MM-DDThh:mm:ss

frequency units Units of the frequency of the primary export. Valid entries are years,
months, days, hours, minutes

frequency An integer frequency of the file for this primary export.

The following are descriptions of a mask entry:

mask name Name of the mask

mask function The function used to generate the mask. Currently the only supported func-
tion is the bounding box which is specified as bbox(field name,lat min,lat max,lon min,lon max,real in,real out).
The arguements are as follows: field name is an input field whose grid will be used to cre-
ate the mask. The next four arguments define the corners of a rectangular bounding box
by specifiy the maximum latitudes and longitudes. Finally real in and real out are num-
bers specify what the value of the mask will be inside and outside of the box. In addition
to specifying a real number the user may specify ”UNDEF” which will make the value
MAPL UNDEF

40

The following is a description of a derived export entry:

field name Name of the field to be filled

expression Legal expression understood by the MAPL parser, for more information see
details on legal expressions in the parser documentation. Legal variable names are any
field name in the primary export list or mask name in the mask list. Remember that the
fields in an expression must have the same grid, otherwise an error will result.

refresh template Same options as with the primary export

The Refresh Template controls when the data in the field being satisfied by Extdata is
updated and currently has three options:

The first option is set the refresh template to ’-’. In this case the field will only be updated
once, the first time the run method of MAPL ExtDataGridCompMod is called. The data will
be read from the file obtained from evaluating the file template at the current model time.

The second option is to provide a template of the form %y4-%m2-%d2T%h2:%n2:00 where
y4, m2, d2, h2, and n2 are the year,month, day, time, and minute. The user then substitutes
the time they wish the variable to be periodically updated. This is best illustrated by
examples. For example to update the variable daily at 21Z the refresh template should
read %y4-%m2-%d2T21:00:00. At 21Z every day MAPL ExtDataGridCompMod will attempt
to read a variable from the file obtained by apply the current time to the file template. To
update the variable monthly on the 1st of the month at 21Z the refresh template should
read %y4-%m2-01T21:00:00.

Finally the refresh template can be set to ’0’. In this case the field will be updated at every
time step in the model run. Simply because the field is being updated at every timestep
does not mean there has to be data on file for each timestep. If you have the data on file
at a larger frequency than the model timestep ExtData can interpolate between the times
for which data exists, even if that data is distributed among multiple files.

In order to understand how to use Extdata when the refresh template is ’0’ it is helpful
to understand what it does it in this case. The basic idea is that for a given model time
ExtData tries to find two times, the left and right bracketing time, on the available files
that bracket the current time. It then reads the data at those times and performs a linear
interpolation to get the data at the current time. It stores the bracketing data for later
times to minimize the IO and updates the bracketing data as neccessary when the current
time passes the right bracketing time. The data need not reside all on one file.

To get the data Extdata needs to the know what files are available and where to look
for the data. Extdata accomplishes this by assuming that the files containing the data
are timestamped starting at a reference time at some frequency when the refresh template

41

is ’0’. For example you could have a daily file, a monthly file, or a file every two hours
starting at 13:30 on a particular day, as long as there is data on the files that covers the
time you want to run you application and that any times on the file fall within the range
of the timestamp. Thus if you have a file with the template myfile.%y4%m2%d2.nc4, one
particular file might be myfile.20010414.nc4 and any times in this file must be sometime on
the 14th of march 2001.

There are two ways to specify the reference time and frequency. The first is to use the three
optional keywords for a primary export. As described in the section on primary exports
you specify a reference time, and a frequency with some units. When ExtData tries to find
the bracketing data it starts by finding a file with a timestamp closest to but less than or
equal to the current time. If it does not find a bracketing time there it checks the file with
the timestamp at the frequency interval before and after the file it just checked.

The second is to let ExtData figure out the frequency from the file template itself and leaving
the final three entries in the primary export blank. In that case it determines the rightmost
token in the grads template and uses that as the frequency. For example if the template is
filename.%y4%m2%d2.nc4 the frequency will be assumed to be days. The reference time
is taken to be the application start time at the beginning with any time units less than
the frequency assumed to be zero. So using the same file template again if we start on
2001-04-14 at 21z the reference time will be set to 2001-04-14 at 0z.

To hopefully make this clearer here are several concrete examples showing how it might be
used.

Suppose we have data on daily files and each file has data at 0Z, 6Z, 12Z, and 18Z. The file
template is myfile.%y4%m2%d2.nc4 and we leave the reference time and frequency blank.

if the clock starts at 21Z on January 1, 2001 these are the initial bracketing
times data is read from

myfile.20010101.nc4
0Z
6Z
12Z
18Z Left bracket time
myfile.20010102.nc4
0Z Right bracket time
6Z
12Z
18Z

When the time passes 0Z on 2nd of month we must update bracket time
and now the new bracketing times, for example
when it is 2Z on 2nd of month the data for the following times will be in memory

42

myfile.20010101.nc4
0Z
6Z
12Z
18Z
myfile.20010102.nc4
0Z Left bracket time
6Z Right bracket time
12Z
18Z

Now suppose we have data on files every two hours with one time per file, the time on file
being the same as the timestamp on the file. The first file is at 2001-01-01 at 01:30:00 Then
the reference time is 2001-01-01T01:30:00, with a frequency of 2 hours. The file template
must be of the form myfile.%y4%m2%d2 %h2%n2z.nc4

if the clock starts at 2Z on January 1, 2001 and we have a series of files.
The initial bracket times are:

myfile.20010101_0130.nc4 Left bracket Time
myfile.20010101_0330.nc4 Right bracket Time
myfile.20010101_0530.nc4

Now when it is 4Z the bracket times are

myfile.20010101_0130.nc4
myfile.20010101_0330.nc4 Left bracket Time
myfile.20010101_0530.nc4 Right bracket Time

Now suppose we have monthly climatologies. The file template is of the form myfile.%y4%m2.nc4
Each file has data for one time, at noon on the 15th of the month. We leave the reference
time and frequency blank.

if the clock starts at 2001-04-01 0z then initial bracket times and data stored are
myfile.200103.nc4
2001-03-15T12:00:00 left bracket time
myfile.200104.nc4
2001-04-15T12:00:00 right bracket time

later then time is 2001-04-17 0z then the bracket times and data stored are

43

myfile.200104.nc4
2001-04-15T12:00:00 left bracket time
myfile.200105.nc4
2001-05-15T12:00:00 right bracket time

3.7 Performing Arithemtic Operations on Fields: Mapl NewArthParser

MAPL NewArthParserMod is a module that provides a mathematical parsing capabiltiy to
MAPL and ESMF components. The module evaluates an ESMF field element by ele-
ment using an expression which could contain other ESMF fields as variables. Exam-
ples of use for this component would be to take the Log of every element in a field or
add two fields element by element. The heart of the module is a simple public routine
MAPL StateEval(state,expression,field,rc) with three required arguments. The arguments
are as follows:
state is an ESMF State type containing some number of fields.
expression is a character string containing a valid mathematical function string.
field is an ESMF Field type that will be filled using the expression.

The expression can contain the names of any fields in the state as variables.

The following can appear in the expression string
1. The function string can contain the following mathematical operators +, -, *, /, ˆ and ()
2. Variable names - these can be any field name in the input state. Parsing of variable
names is case sensitive.
3. The following single argument fortran intrinsic functions and user defined functions are
implmented: exp, log10, log, sqrt, sinh, cosh, tanh, sin, cos, tan, asin, acos, atan, heav (the
Heaviside step function). Parsing of functions is case insensitive.
4. Integers or real constants. To be recognized as explicit constants these must conform to
the format

[+|-][nnn][.nnn][e|E|d|D[+|-]nnn]

where nnn means any number of digits. The mantissa must contain at least one digit before
or following an optional decimal point. Valid exponent identifiers are ’e’, ’E’, ’d’ or ’D’. If
they appear they must be followed by a valid exponent!

Operations are evaluated in the order

1. () expressions in brackets

2. -X unary minux

44

3. XˆY exponentiation

4. X*Y X/Y multiplicaiton and division

5. A+B X-Y addition and subtraction

One logical requirement is that the fields in the state and the field being filled are on the same
grid, including vertical levels. For example, 3D fields in an expression must ALL have been
created with the same vertical levels (MAPL DimsVLocationEdge or MAPL DimsVLocationCenter).
If not an error will result. The one exception is operations involving 3D and 2D fields when
the resultant field is a 3D field. In this case, the operation is performed between each level
of the 3D field and the 2D field. This is useful if one wanted to scale each level of a 3D field
with the same 2D field. Of course the first two dimensions of the 3D field must be same as
the 2D field.

The parser also obeys undef arithmetic. Any arithemtic operation involving MAPL Undef
or function of MAPL Undef results in MAPL Undef.

The following are several examples of valid expressions. For the examples we will assume
that the input state has 4 fields A, B, C, and D.
1. B*2.0e0
2. sqrt(A*A+B*B)
3. A*heav(B)
4. Aˆ(C+D)-2.0e-3

3.8 Doing I/O: Mapl CFIO

MAPL CFIO interfaces CFIO to the ESMF data types. It currently includes read-write sup-
port for ESMF Fields and ESMF States, and read support for ESMF Fields and Fortran
arrays. It has only four methods:

1. MAPL CFIOCreate

2. MAPL CFIOWrite

3. MAPL CFIORead

4. MAPL CFIODestroy

Except for MAPL Read, all work on a MAPL CFIO object. Reading is done directly from a file
to the appropriate ESMF object.

MAPL CFIO is designed for two modes of I/O: self-describing formats (SDF), of which it
supports HDF-4 (not 5!?!?!) and NetCDF-3, and flat files which includes support for GrADS

45

readable files. The GrADS support is still under construction. There are also plans to add
GRIB support.

In SDF mode, capability of MAPL CFIO depends on which of the two libraries (HDF or
NetCDF) is linked with the application - both cannot be used because of name conflicts
between these two libraries. If NetCDF is linked, only NetCDF files may be read or written.
If HDF is linked, both HDF and NetCDF files may be read, but only HDF files may be
written.

3.9 Miscellaneous Features: Mapl Utils

Many aspects of the ESMF infrastructure, such as those dealing with time management,
error logging, etc., can easily be used directly by modelers. Elements of the infrastructure
that involve interfaces to ESMF’s communications layer, which are intended to be among
ESMF most powerful methods, are not as easy to adopt. The major hurdle to using these
elements of the ESMF infrastructure is that the user pretty much has to put his data into
ESMF Fields, which are the main objects on which the ESMF communication methods work.
Mapl facilitates this by creating all elements described in data services as ESMF Fields or
ESMF Bundles within the three states. In user code these can be extracted directly and
manipulated as ESMF Fields when using ESMF infrastructure, or one can extract Fortran
pointers to the data when interfacing to existing user code.

Mapl provides several features that, although not central to its main goals, can be very
handy. Some of these provide functionality in an instance-specific way by saving metadata
in the Mapl object. This saves the user the need to deal with such things in his private
internal state. The main support is for profiling, error handling, and astronomy. These are
very simple and we expect that eventually they will be superceded by ESMF utilities, or
remain as simple interfaces to them.

3.9.1 Error Handling

The error handling utility consists of the three macros:

VERIFY_(STATUS)
RETURN_(ESMF_Success|ESMF_Failure)
ASSERT_(logical expr)

These are used by setting the local character string variable Iam to the soubroutine name,
where possible qualified by the instance’s name, and then using VERIFY to test ESMF and
Mapl return codes, RETURN to exit routines, and ASSERT for conditional aborts.

46

3.9.2 Profiling

The API of the profiling utility consists three subroutines:

MAPL_TimerAdd(MAPL, NAME, RC)
MAPL_TimerOn (MAPL, NAME, RC)
MAPL_TimerOff(MAPL, NAME, RC)

where MAPL is the Mapl object and NAME is the string name of a performance meter.
Meters are usually registered in SetServices with Add and can then be turned on and off
throughout the user code. In MAPL GenericFinalize the results are reported to standard
out. Even if the user registers no meters, the performance of the generic IRF methods is
reported.

3.9.3 Astronomy

The astronomy is also simple and easy to use. At any time after the Mapl object is created
(i.e., after the call to MAPL GenericSetServices) it can be queried for an opaque object of
type MAPL SunOrbit. This orbit object can then be used to get the insolation at the top of
the atmosphere through the following API:

MAPL_SunGetInsolation(LONS, LATS, ORBIT,ZTH,SLR,INTV,CLOCK,TIME,RC)

where LONS and LATS can be either one- or two-dimensional Fortran arrays or general
ESMF arrays with one or two horizontal dimensions, ORBIT is the predefined object of type
MAPL SunOrbit, and ZTH and SLR are the cosine of the solar zenith angle and the TOA
insolation at the given latitudes and longitudes; these are, of course, declared in the same
way as LONS and LATS. The remaining arguments are optional and their use is explained in
Part II(!?!?!).

By default the orbit created by Mapl uses late 20th orbital parameters. These can be
overidden in the configuration by specifying ECCENTRICITY:, OBLIQUITY:, PERIHELION:,
and EQUINOX:. The meanings of these, as well as more complex uses of the astronomy are
also explained in the prologues of MAPL SunMod in Part II (!?!?!).

3.9.4 Universal Constants

The following universal constants are defined when MAPLMod is used:

47

Table 3.2: Table of universal constants

MAPL PI 3.14159265358979323846 ---
MAPL GRAV 9.80 m s−2

MAPL RADIUS 6376.0e3 m
MAPL OMEGA 2.0*MAPL PI/86164.0 s−1

MAPL ALHL 2.4548e6 J kg−1

MAPL ALHS 2.8368e6 J kg−1

MAPL ALHF MAPL ALHS-MAPL ALHL J kg−1

MAPL STFBOL 5.6734e-8 W m−2 K−4

MAPL AIRMW 28.97 kg Kmol−1

MAPL H2OMW 18.01 kg Kmol−1

MAPL RUNIV 8314.3 J Kmol−1 K−1

MAPL KAPPA 2.0/7.0 ---
MAPL RVAP MAPL RUNIV/MAPL H2OMW J K−1 kg−1

MAPL RGAS MAPL RUNIV/MAPL AIRMW J K−1 kg−1

MAPL CP MAPL RGAS/MAPL KAPPA J K−1 kg−1

MAPL P00 100000.0 Pa
MAPL CAPWTR 4218. J K−1 kg−1

MAPL RHOWTR 1000. kg m−3

MAPL NUAIR 1.533e-5 m2 S−1 (@ 18C)
MAPL TICE 273.16 K
MAPL UNDEF -999.0 ---
MAPL SRFPRS 98470. Pa
MAPL KARMAN 0.40 ---
MAPL USMIN 1.00 m s−1

MAPL VIREPS MAPL AIRMW/MAPL H2OMW-1.0 ---

3.10 A complete MAPL example - Held-Suarez benchmark
for FVdycore

Provide a description of this application — how the application is structured, what the
components are etc.

Appendix A

MAPL Application Programming
Interface (API)

Contents

A.1 MAPL CapMod — Implements the top entry point for MAPL
components . 51

A.1.1 MAPL Cap – Implements generic Cap functionality 53
A.2 MAPL GenericMod . 55

A.2.1 MAPL GenericSetServices . 59
A.2.2 MAPL GenericInitialize – Initializes the component and its children 60
A.2.3 MAPL GenericRun . 60
A.2.4 MAPL GenericFinalize – Finalizes the component and its children 61
A.2.5 MAPL StateAddImportSpec — Sets the specifications for an item

in the IMPORT state. 61
A.2.6 MAPL StateAddExportSpec — sets the specifications for an item

in the EXPORT state . 63
A.2.7 MAPL AddInternalSpec . 64
A.2.8 MAPL DoNotDeferExport . 66
A.2.9 MAPL GridCompSetEntryPoint 66
A.2.10 MAPL GetObjectFromGC . 67
A.2.11 MAPL Get . 67
A.2.12 MAPL Set . 69
A.2.13 MAPL GenericRunCouplers . 70
A.2.14 MAPL StatePrintSpecCSV . 71
A.2.15 MAPL AddChild . 71
A.2.16 MAPL AddConnectivity . 72
A.2.17 MAPL TerminateImport . 74
A.2.18 MAPL TimerOn . 75

48

49

A.2.19 MAPL TimerOff . 76
A.2.20 MAPL TimerAdd . 76
A.2.21 MAPL GetResource . 77
A.2.22 MAPL ReadForcing . 80

A.3 MAPL CFIO — CF Compliant I/O for ESMF 81

A.3.1 MAPL CFIOCreate — Creates a MAPL CFIO Object 86
A.3.2 MAPL CFIOWrite — Writing Methods 89
A.3.3 MAPL CFIOWrite — Writing Methods 90
A.3.4 MAPL CFIORead — Reading Methods 92
A.3.5 MAPL CFIODestroy — Destroys MAPL CFIO Object 101
A.3.6 MAPL CFIOClose — Close file in MAPL CFIO Object 101

A.4 MAPL LocStreamMod – Manipulate location streams 102

A.4.1 MAPL LocStreamCreate . 103
A.4.2 MAPL LocStreamTransform . 104

A.5 MAPL BaseMod — A Collection of Assorted MAPL Utilities 107

A.5.1 MAPL LatLonGridCreate — Create regular Lat/Lon Grid 110
A.5.2 MAPL GetHorzIJIndex – Get indexes on destributed ESMF grid

for an arbitary lat and lon . 114
A.6 ESMFL MOD . 115

A.6.1 ESMFL GridCoordGet - retrieves the coordinates of a particular
axis . 116

A.6.2 ESMFL RegridStore . 116
A.6.3 FieldRegrid1 . 117
A.6.4 BundleRegrid1 . 118
A.6.5 BundleRegrid . 119
A.6.6 Bundle Prep . 120
A.6.7 assign slices . 121
A.6.8 Do Gathers . 121
A.6.9 Do Regrid . 122
A.6.10 Do Scatters . 122
A.6.11 StateRegrid . 123
A.6.12 ESMFL FieldGetDims . 124
A.6.13 BundleDiff . 124
A.6.14 StateDiff . 125
A.6.15 ESMFL GridDistBlockSet . 125

A.7 MAPL HistoryGridCompMod 126

A.8 MAPL GenericCplCompMod . 131

A.8.1 GenericCplSetServices . 132
A.8.2 INITIALIZE . 133
A.8.3 RUN . 133
A.8.4 FINALIZE . 134

50

A.9 MAPL ExtDataGridCompMod - Implements Interface to Ex-
ternal Data . 134

A.9.1 SetServices — Sets IRF services for the MAPL ExtData 135
A.9.2 Initialize — Initialize MAPL ExtData 135
A.9.3 Run — Runs MAPL ExtData . 136
A.9.4 Finalize — Finalize MAPL ExtData 137

51

A.1 Module MAPL CapMod — Implements the top entry
point for MAPL components

USES:

use ESMF
use MAPL_BaseMod
use MAPL_ConstantsMod
use MAPL_ProfMod
use MAPL_MemUtilsMod
use MAPL_IOMod
use MAPL_CommsMod
use MAPL_GenericMod
use MAPL_LocStreamMod
use ESMFL_Mod
use MAPL_ShmemMod
use MAPL_HistoryGridCompMod, only : Hist_SetServices = > SetServices
use MAPL_HistoryGridCompMod, only : HISTORY_ExchangeListWrap
use MAPL_ExtDataGridCompMod, only : ExtData_SetServices = > SetServices
use MAPL_CFIOServerMod

PUBLIC MEMBER FUNCTIONS:

public MAPL_Cap

DESCRIPTION:

The main program (or, in ESMF lingo, the Cap) of any ESMF application is provided by the
user. In MAPL, it initiates the execution of each of the sub-hierarchies of the application
(SetServices, Initialize, Run, Finalize, and the new Record). Usually, each of these, except
Run and Record, is executed only once.

In MAPL applications, the Cap contains the time loop. The hierarchy of Run methods is
called each time through the loop, returning control to the Cap after each round trip down
and back up the hierarchy. The Run hierarchy must be invoked once and only once each
time through the time loop.

The time loop advances the current time of the Application Clock – the ESMF Clock
that is passed down to all registered methods of all components in the hierarchy. MAPL
applications require that the Application Clock be “ticked” after the Run method is invoked,

52

but before the Record. The time interval of the Application Clock is called the heartbeat
in MAPL.

Since the Cap is a main program, it is not an ESMF Gridded Component. A MAPL com-
ponent’s cap, however, has ”children” and treats them much as any Composite Component
would. In particular, it registers them with MAPL by invoking a MAPL AddChild for each
one.

The Cap for a MAPL application has only two children: a single instance of the Root
Component of a MAPL hierarchy and a single instance of MAPL’s own History Component.
The History Component services the computational components’ diagnostic output.

As might be expected from this simple set of rules, all MAPL Caps are very similar. We
have therefore gathered the basic MAPL Cap functionality in a single Fortran subroutine
(MAPL Cap) that is included in the MAPL library.

For basic MAPL Caps, a call to this subroutine is the only required executable statement
of the main program. As an example, the following code is the entire main program of the
Held-Suarez example:

#define I_AM_MAIN
#include "MAPL_Generic.h"

Program Main

use MAPL_Mod
use GEOS_AgcmSimpleGridCompMod, only: ROOT_SetServices => SetServices

implicit none
integer :: STATUS
character(len=18) :: Iam="Main"

call MAPL_CAP(ROOT_SetServices, rc=STATUS)
VERIFY_(STATUS)

call exit(0)

end Program Main

Notice that, besides calling the MAPL Cap subroutine, the only purpose of this program is
to identify the root component of the MAPL hierarchy by accessing its SetServices through
use association. The rest of the code is a bit of MAPL boilerplate. In fact, doing away with
MAPL and Fortran niceties, the code can be reduced to:

53

Program Main

use GEOS_AgcmSimpleGridCompMod, only: ROOT_SetServices => SetServices
call MAPL_CAP(ROOT_SetServices)

end Program Main

In either case, only the name GEOS AgcmSimpleGridCompMod needs to be modified to
use these codes in another application.

In using MAPL, it is important to know exactly what boilerplate routines, such as MAPL Cap,
are doing for you, so that you can supplement or replace them with custom code, if neces-
sary. MAPL Cap is simple enough that it is probably easier to look at its full code than
to try to describe its functioning in detail. Studying this code should also be useful if one
decides to write a more specialized custom version to replace it.

A.1.1 MAPL Cap – Implements generic Cap functionality

INTERFACE:

subroutine MAPL_CAP(ROOT_SetServices, Name, AmIRoot, FinalFile, RC)

ARGUMENTS:

external :: ROOT_SetServices
character*(*), optional, intent(IN) :: Name
logical, optional, intent(OUT) :: AmIRoot
character*(*), optional, intent(IN) :: FinalFile
integer, optional, intent(OUT) :: rc

RESOURCES:

Name Description Units Default

"ROOT CF:" Name of ROOT’s config file string "ROOT.rc"

54

Name Description Units Default

"ROOT NAME:" Name to assign to the ROOT component string "ROOT"
"HIST CF:" Name of HISTORY’s config file string "HIST.rc"
"EXTDATA CF:" Name of ExtData’s config file string ’ExtData.rc’
"MAPL ENABLE TIMERS:"Control Timers string ’NO’
"MAPL ENABLE MEMUTILS:"Control Memory Diagnostic Utility string ’NO’

RESOURCES:

Name Description Units Default

’BEG DATE:’
’BEG YY:’ Beginning year (integer) year
’BEG MM:’ Beginning month (integer 1-12) month 1
’BEG DD:’ Beginning day of month (integer 1-31) day 1
’BEG H:’ Beginning hour of day (integer 0-23) hour 0
’BEG M:’ Beginning minute (integer 0-59) minute 0
’BEG S:’ Beginning second (integer 0-59) second 0
’END DATE:’
’END YY:’ Ending year (integer) year
’END MM:’ Ending month (integer 1-12) month 1
’END DD:’ Ending day of month (integer 1-31) day 1
’END H:’ Ending hour of day (integer 0-23) hour 0
’END M:’ Ending minute (integer 0-59) minute 0
’END S:’ Ending second (integer 0-59) second 0
’JOB SGMT:’
’JOB DURATION:’
’DUR YY:’ Ending year (integer) year
’DUR MM:’ Ending month (integer 1-12) month 0
’DUR DD:’ Ending day of month (integer 1-31) day 1
’DUR H:’ Ending hour of day (integer 0-23) hour 0
’DUR M:’ Ending minute (integer 0-59) minute 0
’DUR S:’ 0
’HEARTBEAT DT:’Interval of the application clock

(the Heartbeat)
seconds

’NUM DT:’ numerator of decimal fraction of time
step

1 0

’DEN DT:’ denominator of decimal fraction of
time step

1 1

’CALENDAR:’ Calendar type string "GREGORIAN"

55

A.2 Module MAPL GenericMod

DESCRIPTION:

MAPL Generic allows the user to easily build ESMF gridded components. It has its own
SetServices, Initialize, Run, and Finalize (IRF) methods, and thus is itself a valid gridded
component, although somewhat non-standard since it makes its IRF methods public. An
instance of MAPL Generic does no useful work, but can be used as a null MAPL Generic
component.

The standard way to use MAPL Generic is as an aid in building ESMF gridded components.
A MAPL/ESMF gridded component built in this way will always have its own SetServices,
which will call the subroutine MAPL GenericSetServices. When MAPL GenericSetServices
is called it sets the component’s IRF methods to the generic versions, MAPL GenericInitialize,
MAPL GenericFinalize, and MAPL GenericRun. Any (or all) of these may be used as de-
fault methods by a gridded component. (As we will see below, using all three default IRF
methods in this way need not be equivalent to instanciating a null component.) If for any
of the three IRF methods the default version is inadequate, it can simply be overrided by
having the component register its own method after the call to MAPL GenericSetServices.

The generic IRF methods perform a number of useful functions, including creating, allo-
cating, and initializing the components Import, Export, and Internal states. It would be a
shame to waste this capability when a component needs to write its own version of an IRF
method. A common situation is that the component wants support in performing these
functions, but needs to do some (usually small) additional specialized work; for example,
it may need to do some special initializations. In this case, one would write a light ver-
sion of the IRF method that does the specialized work and calls directly the corresponding
MAPL Generic method to do the boilerplate. This is why MAPL Generic, unlike a standard
ESMF gridded component, makes its IRF methods public and why we added the “Generic”
modifier (i.e., MAPL GenericInitialize, rather than MAPL Initialize), to emphasize that
they are directly callable IRF methods.

MAPL Generic may also be viewed as a fairly standard Fortran 90 “class,” which defines
and makes public an opaque object that we refer to as a “MAPL Generic State.” This object
can be created only in association with a standard ESMF Gridded Component (GC), by
making a MAPL GenericSetServices call. This object can be obtained through an ESMF
GC method which is currently provided with MAPL. The MAPL Generic State is, therefore,
just another thing that lives in the ESMF GC, like the grid and the configuration. The
MAPL Generic State is private, but user components can access its contents through public
MAPL Generic methods (Get, Set, etc). The bulk of MAPL Generic consists of methods
that act on this object.

56

MAPL GenericSetServices and MAPL Generic IRF methods cannot create their own ESMF
grid. The grid must be inherited from the parent or created by the component either in its
own SetServices or in its Initialize, if it is writing one. In any case, an important assumption
of MAPL is that the grid must already be present in the component and initialized when
MAPL GenericSetServices is invoked. The same is true of the configuration.

In MAPL Generic, we distinguish between simple (leaf) gridded compnents and composite
gridded components, which contain other (child) gridded components. We also define three
types of services, which can be registered by the component’s SetServices routine.

• Functional services: These are the standard EMSF callable IRF methods for the
component.

• Data services: These are descriptions of the component’s import, export, and inter-
nal states, which can be manipulated by MAPL Generic.

• Child services: These are the services of the component’s children and their con-
nectivity.

• Profiling Services: These are profiling counters (clocks) that can be used by the
component and are automatically reported by generic finalize.

MAPL GenericSetServices provides generic versions of all these, as described below.

USES:

use ESMF
use ESMFL_Mod
use MAPL_BaseMod
use MAPL_IOMod
use MAPL_CFIOMod
use MAPL_ProfMod
use MAPL_MemUtilsMod
use MAPL_CommsMod
use MAPL_ConstantsMod
use MAPL_SunMod
use MAPL_VarSpecMod
use MAPL_GenericCplCompMod
use MAPL_LocStreamMod
use m_chars
use, intrinsic :: ISO_C_BINDING

PUBLIC MEMBER FUNCTIONS:

57

public MAPL_GenericSetServices
public MAPL_GenericInitialize
public MAPL_GenericRun
public MAPL_GenericFinalize

public MAPL_AddInternalSpec
public MAPL_AddImportSpec
public MAPL_AddExportSpec

public MAPL_DoNotDeferExport

public MAPL_GridCompSetEntryPoint
public MAPL_GetObjectFromGC
public MAPL_Get
public MAPL_Set
public MAPL_GenericRunCouplers

!public MAPL_StateGetSpecAttrib
!public MAPL_StateSetSpecAttrib
!public MAPL_StateGetVarSpecs
!public MAPL_StatePrintSpec
public MAPL_StatePrintSpecCSV

! MAPL_Connect
public MAPL_AddChild
public MAPL_AddConnectivity
public MAPL_TerminateImport

! MAPL_Util
!public MAPL_GenericStateClockOn
!public MAPL_GenericStateClockOff
!public MAPL_GenericStateClockAdd
public MAPL_TimerOn
public MAPL_TimerOff
public MAPL_TimerAdd
public MAPL_GetResource
public MAPL_ReadForcing

PUBLIC TYPES:

public MAPL_MetaComp

58

This defines the MAPL Generic class. It is an opaque object that can be queried using
MAPL GenericStateGet. An instance of this type is placed in the default internal state
location of the ESMF gridded component by MAPL GenericSetServices. This instance
can be retreived by using MAPL InternalStateGet.

CODE:

type MAPL_MetaComp
private
type (ESMF_GridComp), pointer :: GCS(:) = > null()
type (ESMF_State), pointer :: GIM(:) = > null()
type (ESMF_State), pointer :: GEX(:) = > null()
type (ESMF_CplComp), pointer :: CCS(:,:) = > null()
type (ESMF_State), pointer :: CIM(:,:) = > null()
type (ESMF_State), pointer :: CEX(:,:) = > null()
logical, pointer :: CCcreated(:,:) = > null()
type (MAPL_GenericGrid) :: GRID
type (ESMF_Alarm) :: ALARM(0:LAST_ALARM)
integer :: ALARMLAST = 0
type (ESMF_Clock) :: CLOCK
type (ESMF_Config) :: CF
type (ESMF_State) :: INTERNAL
type (MAPL_SunOrbit) :: ORBIT
type (MAPL_VarSpec), pointer :: IMPORT_SPEC(:) = > null()
type (MAPL_VarSpec), pointer :: EXPORT_SPEC(:) = > null()
type (MAPL_VarSpec), pointer :: INTERNAL_SPEC(:) = > null()
type (MAPL_VarSpec), pointer :: FRCSPEC(:) = > null()
type (MAPL_Prof), pointer :: TIMES(:) = > null()
character(len = ESMF_MAXSTR) , pointer :: GCNameList(:) = > null()
type(ESMF_GridComp) :: RootGC
type(ESMF_GridComp) , pointer :: parentGC = > null()
logical :: ChildInit = .true.
type (MAPL_Link) , pointer :: LINK(:) = > null()
type (MAPL_LocStream) :: ExchangeGrid
type (MAPL_LocStream) :: LOCSTREAM
character(len = ESMF_MAXSTR) :: COMPNAME
type (MAPL_GenericRecordType) , pointer :: RECORD = > null()

59

type (ESMF_State) :: FORCING
integer , pointer :: phase_init (:) = > null()
integer , pointer :: phase_run (:) = > null()
integer , pointer :: phase_final(:) = > null()
integer , pointer :: phase_record(:) = > null()
integer , pointer :: phase_coldstart(:) = > null()
real :: HEARTBEAT
type (MAPL_Communicators) :: comm

end type MAPL_MetaComp

A.2.1 MAPL GenericSetServices

INTERFACE:

recursive subroutine MAPL_GenericSetServices (GC, RC)

ARGUMENTS:

type(ESMF_GridComp), intent(INOUT) :: GC ! Gridded component
integer, intent(OUT) :: RC ! Return code

DESCRIPTION:

MAPL GenericSetServices performs the following tasks:

• Allocate an instance of MAPL GenericState, wrap it, and set it as the GC’s internal
state.

• Exract the grid and configuration from the GC and save them in the generic state.

• Set GC’s IRF methods to the generic versions

• If there are children

– Allocate a gridded comoponent and an import and export state for each child

– Create each child’s GC using the natural grid and the inherited configuration.

– Create each child’s Import and Export states. These are named GCNames(I)//" IMPORT"
and GCNames(I)//" EXPORT"

60

– Invoke each child’s set services.

– Add each item in each child’s export state to GC’s export state.

– Add each item in each child’s import state to GC’s import, eliminating duplicates.

Since MAPL GenericSetServices calls SetServices for the children, which may be generic
themselves, the routine must be recursive.

The optional arguments describe the component’s children. There can be any number of
children but they must be of one of the types specified by the five SetServices entry points
passed. If SSptr is not specified there can only be five children, one for each SSn, and the
names must be in SSn order.

A.2.2 MAPL GenericInitialize – Initializes the component and its chil-
dren

INTERFACE:

recursive subroutine MAPL_GenericInitialize (GC, IMPORT, EXPORT, CLOCK, RC)

ARGUMENTS:

type(ESMF_GridComp), intent(INOUT) :: GC ! Gridded component
type(ESMF_State), intent(INOUT) :: IMPORT ! Import state
type(ESMF_State), intent(INOUT) :: EXPORT ! Export state
type(ESMF_Clock), intent(INOUT) :: CLOCK ! The clock
integer, optional, intent(OUT) :: RC ! Error code:

A.2.3 MAPL GenericRun

INTERFACE:

recursive subroutine MAPL_GenericRun (GC, IMPORT, EXPORT, CLOCK, RC)

61

ARGUMENTS:

type(ESMF_GridComp), intent(INOUT) :: GC ! Gridded component
type(ESMF_State), intent(INOUT) :: IMPORT ! Import state
type(ESMF_State), intent(INOUT) :: EXPORT ! Export state
type(ESMF_Clock), intent(INOUT) :: CLOCK ! The clock
integer, optional, intent(OUT) :: RC ! Error code:

A.2.4 MAPL GenericFinalize – Finalizes the component and its children

INTERFACE:

recursive subroutine MAPL_GenericFinalize (GC, IMPORT, EXPORT, CLOCK, RC)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: GC ! composite gridded component
type(ESMF_State), intent(inout) :: IMPORT ! import state
type(ESMF_State), intent(inout) :: EXPORT ! export state
type(ESMF_Clock), intent(inout) :: CLOCK ! the clock
integer, optional, intent(out) :: RC ! Error code:

! = 0 all is well
! otherwise, error

A.2.5 MAPL StateAddImportSpec — Sets the specifications for an item
in the IMPORT state.

A.2.5.1

INTERFACE:

subroutine MAPL_StateAddImportSpec (GC, SHORT_NAME, LONG_NAME, &

62

UNITS, Dims, VLocation, &
DATATYPE,NUM_SUBTILES, REFRESH_INTERVAL, &
AVERAGING_INTERVAL, HALOWIDTH, DEFAULT, &
RESTART, UNGRIDDED_DIMS, FIELD_TYPE, RC)

ARGUMENTS:

type (ESMF_GridComp) , intent(INOUT) :: GC
character (len = *) , intent(IN) :: SHORT_NAME
character (len = *) , optional , intent(IN) :: LONG_NAME
character (len = *) , optional , intent(IN) :: UNITS
integer , optional , intent(IN) :: DIMS
integer , optional , intent(IN) :: DATATYPE
integer , optional , intent(IN) :: NUM_SUBTILES
integer , optional , intent(IN) :: VLOCATION
integer , optional , intent(IN) :: REFRESH_INTERVAL
integer , optional , intent(IN) :: AVERAGING_INTERVAL
integer , optional , intent(IN) :: HALOWIDTH
real , optional , intent(IN) :: DEFAULT
logical , optional , intent(IN) :: RESTART
integer , optional , intent(IN) :: UNGRIDDED_DIMS(:)
integer , optional , intent(IN) :: FIELD_TYPE
integer , optional , intent(OUT) :: RC

A.2.5.2 Add IMPORT spec from child

INTERFACE:

subroutine MAPL_StateAddImportSpec (STATE, SHORT_NAME, CHILD_ID, RC)

ARGUMENTS:

type (MAPL_MetaComp) , intent(INOUT) :: STATE
character (len = *) , intent(IN) :: SHORT_NAME
integer , intent(IN) :: CHILD_ID
integer , optional , intent(OUT) :: RC

63

A.2.6 MAPL StateAddExportSpec — sets the specifications for an item
in the EXPORT state

A.2.6.1

INTERFACE:

subroutine MAPL_StateAddExportSpec (GC, SHORT_NAME, LONG_NAME, &
UNITS, Dims, VLocation, &
DATATYPE,NUM_SUBTILES, &
REFRESH_INTERVAL, AVERAGING_INTERVAL, &
HALOWIDTH, DEFAULT, UNGRIDDED_DIMS, &
FIELD_TYPE, RC)

ARGUMENTS:

type (ESMF_GridComp) , intent(INOUT) :: GC
character (len = *) , intent(IN) :: SHORT_NAME
character (len = *) , optional , intent(IN) :: LONG_NAME
character (len = *) , optional , intent(IN) :: UNITS
integer , optional , intent(IN) :: DIMS
integer , optional , intent(IN) :: DATATYPE
integer , optional , intent(IN) :: VLOCATION
integer , optional , intent(IN) :: NUM_SUBTILES
integer , optional , intent(IN) :: REFRESH_INTERVAL
integer , optional , intent(IN) :: AVERAGING_INTERVAL
integer , optional , intent(IN) :: HALOWIDTH
real , optional , intent(IN) :: DEFAULT
integer , optional , intent(IN) :: UNGRIDDED_DIMS(:)
integer , optional , intent(IN) :: FIELD_TYPE
integer , optional , intent(OUT) :: RC

A.2.6.2 Add EXPORT spec from child

INTERFACE:

subroutine MAPL_StateAddExportSpec (GC, SHORT_NAME, CHILD_ID, RC)

64

ARGUMENTS:

type(ESMF_GridComp), intent(INOUT) :: GC
character (len = *) , intent(IN) :: SHORT_NAME
integer , intent(IN) :: CHILD_ID
integer , optional , intent(OUT) :: RC

A.2.6.3 Add EXPORT spec from all

INTERFACE:

subroutine MAPL_StateAddExportSpec (STATE, RC)

ARGUMENTS:

type (MAPL_MetaComp) , intent(INOUT) :: STATE
integer , optional , intent(OUT) :: RC

A.2.7 MAPL AddInternalSpec

A.2.7.1 Sets specifications for an item in the INTERNAL state

INTERFACE:

subroutine MAPL_AddInternalSpec (GC, &
SHORT_NAME, &
LONG_NAME, &
UNITS, &
DIMS, &
VLOCATION, &
DATATYPE, &
NUM_SUBTILES, &
REFRESH_INTERVAL, &

65

AVERAGING_INTERVAL, &
DEFAULT, &
RESTART, &
HALOWIDTH, &
PRECISION, &
FRIENDLYTO, &
ADD2EXPORT, &
ATTR_RNAMES, &
ATTR_INAMES, &
ATTR_RVALUES, &
ATTR_IVALUES, &
UNGRIDDED_DIMS, &
FIELD_TYPE, &
RC)

ARGUMENTS:

type (ESMF_GridComp) , intent(INOUT) :: GC
character (len = *) , intent(IN) :: SHORT_NAME
character (len = *) , optional , intent(IN) :: LONG_NAME
character (len = *) , optional , intent(IN) :: UNITS
integer , optional , intent(IN) :: DIMS
integer , optional , intent(IN) :: DATATYPE
integer , optional , intent(IN) :: VLOCATION
integer , optional , intent(IN) :: NUM_SUBTILES
integer , optional , intent(IN) :: REFRESH_INTERVAL
integer , optional , intent(IN) :: AVERAGING_INTERVAL
integer , optional , intent(IN) :: PRECISION
real , optional , intent(IN) :: DEFAULT
logical , optional , intent(IN) :: RESTART
character (len = *) , optional , intent(IN) :: HALOWIDTH
character (len = *) , optional , intent(IN) :: FRIENDLYTO
logical , optional , intent(IN) :: ADD2EXPORT
character (len = *) , optional , intent(IN) :: ATTR_INAMES(:)
character (len = *) , optional , intent(IN) :: ATTR_RNAMES(:)
integer , optional , intent(IN) :: ATTR_IVALUES(:)
real , optional , intent(IN) :: ATTR_RVALUES(:)
integer , optional , intent(IN) :: UNGRIDDED_DIMS(:)
integer , optional , intent(IN) :: FIELD_TYPE
integer , optional , intent(OUT) :: RC

DESCRIPTION:

66

Sets the specifications for an item in the INTERNAL state.

A.2.8 MAPL DoNotDeferExport

INTERFACE:

subroutine MAPL_DoNotDeferExport(GC, NAMES, RC)

ARGUMENTS:

type (ESMF_GridComp) , intent(INOUT) :: GC
character (len = *) , intent(IN) :: NAMES(:)
integer , optional , intent(OUT) :: RC

DESCRIPTION:

For each entry in NAMES marks the export spec to not be deferred during MAPL GenericInitialize.

A.2.9 MAPL GridCompSetEntryPoint

INTERFACE:

subroutine MAPL_GridCompSetEntryPoint(GC, subroutineType, subroutineName, RC)

ARGUMENTS:

type(ESMF_GridComp), intent(INOUT) :: GC ! Gridded component
type(ESMF_Method_Flag), intent(IN) :: subroutineType
external :: subroutineName
integer, optional, intent(OUT) :: RC ! Return code

67

A.2.10 MAPL GetObjectFromGC

A.2.10.1

INTERFACE:

subroutine MAPL_GetObjectFromGC (GC, MAPLOBJ, RC)

ARGUMENTS:

type(ESMF_GridComp), intent(INout) :: GC ! Gridded component
type (MAPL_MetaComp), pointer :: MAPLOBJ
integer, optional, intent(OUT) :: RC ! Return code

DESCRIPTION:

This is the recommended way of getting the opaque MAPL Generic state object from the
gridded component (GC). It can be called at any time after MAPL GenericSetServices has
been called on GC. Note that you get a pointer to the object.

A.2.11 MAPL Get

A.2.11.1

INTERFACE:

subroutine MAPL_Get (STATE, IM, JM, LM, VERTDIM, &
NX, NY, NX0, NY0, LAYOUT, &
GCNames, &
LONS, LATS, ORBIT, RUNALARM, &
IMPORTspec, EXPORTspec, INTERNALspec, &
INTERNAL_ESMF_STATE, &
TILETYPES, TILEKIND, &
TILELATS,TILELONS,TILEAREA,LOCSTREAM, &
EXCHANGEGRID, &
CLOCK, &

68

NumInitPhases, &
GCS, CCS, GIM, GEX, CF, HEARTBEAT, maplComm, RC)

ARGUMENTS:

type (MAPL_MetaComp), intent(INOUT) :: STATE
type (ESMF_Alarm), optional, intent(OUT) :: RUNALARM
type (MAPL_SunOrbit), optional, intent(OUT) :: ORBIT
integer, optional, intent(OUT) :: IM, JM, LM
integer, optional, intent(OUT) :: VERTDIM
integer, optional, intent(OUT) :: NX, NY, NX0, NY0
type (ESMF_DELayout), optional, intent(OUT) :: LAYOUT
real, pointer, optional :: LONS(:,:)
real, pointer, optional :: LATS(:,:)
integer, optional, intent(OUT) :: RC ! Error code:
character(len = ESMF_MAXSTR),optional, pointer :: GCNames(:)
type (MAPL_VarSpec), optional, pointer :: IMPORTspec(:)
type (MAPL_VarSpec), optional, pointer :: EXPORTspec(:)
type (MAPL_VarSpec), optional, pointer :: INTERNALspec(:)
type (ESMF_State), optional, intent(OUT) :: INTERNAL_ESMF_STATE
integer, optional, pointer :: TILETYPES(:)
integer, optional, pointer :: TILEKIND(:)
real, pointer, optional :: TILELONS(:)
real, pointer, optional :: TILELATS(:)
real, pointer, optional :: TILEAREA(:)
type (MAPL_LocStream),optional, intent(OUT) :: LOCSTREAM
type (MAPL_LocStream),optional, intent(OUT) :: EXCHANGEGRID
type (ESMF_CLOCK) ,optional, intent(OUT) :: CLOCK
type (ESMF_GridComp), optional, pointer :: GCS(:)
type (ESMF_CplComp), optional, pointer :: CCS(:,:)
type (ESMF_State), optional, pointer :: GIM(:)
type (ESMF_State), optional, pointer :: GEX(:)
real ,optional, intent(OUT) :: HEARTBEAT
integer, optional, intent(OUT) :: NumInitPhases
type (ESMF_Config), optional, intent(OUT) :: CF
type (MAPL_Communicators), optional, intent(OUT) :: maplComm

DESCRIPTION:

This is the way of querying the opaque MAPL Generic state object. The arguments are:

STATE The MAPL object to be queried.

69

IM Size of the first horizontal dimension (X) of local arrays.

JM Size of the second horizontal dimension (Y) of local arrays.

LM Size of the vertical dimension.

VERTDIM Position of the vertical dimension of 2 or higher dimensional arrays.

NX Size of the DE array dimension aligned with the first horizontal dimension of arrays

NY Size of the DE array dimension aligned with the second horizontal dimension of arrays

NX0, NY0 Coordinates of current DE.

LONS X coordinates of array locations. Currently longitude in radians.

LATS Y coordinates of array locations. Currently latitude in radians.

INTERNAL ESMF STATE The gridded component’s INTERNAL state.

GCNames Names of the children.

GCS The child gridded components.

GIM The childrens’ IMPORT states.

GEX The childrens’ EXPORT states.

CCS Array of child-to-child couplers.

A.2.12 MAPL Set

A.2.12.1

INTERFACE:

subroutine MAPL_Set (STATE, ORBIT, LM, RUNALARM, CHILDINIT, &
LOCSTREAM, EXCHANGEGRID, CLOCK, NAME, &
CF, ConfigFile, maplComm, RC)

ARGUMENTS:

70

type (MAPL_MetaComp), intent(INOUT) :: STATE
type (ESMF_Alarm), optional, intent(IN) :: RUNALARM
type (MAPL_SunOrbit), optional, intent(IN) :: ORBIT
integer, optional, intent(IN) :: LM
logical, optional, intent(IN) :: CHILDINIT
type (MAPL_LocStream), optional, intent(IN) :: LOCSTREAM
type (MAPL_LocStream), optional, intent(IN) :: EXCHANGEGRID
type (ESMF_Clock) , optional, intent(IN) :: CLOCK
type (ESMF_Config) , optional, intent(IN) :: CF
character(len = *) , optional, intent(IN) :: NAME
character(len = *) , optional, intent(IN) :: ConfigFile
type(MAPL_Communicators), optional, intent(IN) :: maplComm
integer, optional, intent(OUT) :: RC

A.2.12.2

INTERFACE:

subroutine MAPL_Set (GC, ORBIT, LM, RUNALARM, CHILDINIT, &
LOCSTREAM, EXCHANGEGRID, CLOCK, RC)

ARGUMENTS:

type (ESMF_GridComp), intent(INout) :: GC
type (ESMF_Alarm), optional, intent(IN) :: RUNALARM
type (MAPL_SunOrbit), optional, intent(IN) :: ORBIT
integer, optional, intent(IN) :: LM
logical, optional, intent(IN) :: CHILDINIT
type (MAPL_LocStream), optional, intent(IN) :: LOCSTREAM
type (MAPL_LocStream), optional, intent(IN) :: EXCHANGEGRID
type (ESMF_Clock) , optional, intent(IN) :: CLOCK
integer, optional, intent(OUT) :: RC

A.2.13 MAPL GenericRunCouplers

INTERFACE:

71

subroutine MAPL_GenericRunCouplers(STATE, CHILD, CLOCK, RC)

ARGUMENTS:

type (MAPL_MetaComp), intent(INOUT) :: STATE
integer, intent(IN) :: CHILD ! Child Id
type(ESMF_Clock), intent(INOUT) :: CLOCK ! The clock
integer, optional, intent(OUT) :: RC ! Error code

A.2.14 MAPL StatePrintSpecCSV

INTERFACE:

recursive subroutine MAPL_StatePrintSpecCSV(GC, printSpec, RC)

ARGUMENTS:

type(ESMF_GridComp), intent(INOUT) :: GC
integer, intent(IN) :: printSpec
integer, optional, intent(OUT) :: RC

A.2.15 MAPL AddChild

A.2.15.1 From Meta

INTERFACE:

recursive integer function MAPL_AddChild (META, NAME, GRID, &
CONFIGFILE, SS, PARENTGC, &
petList, RC)

72

ARGUMENTS:

type(MAPL_MetaComp), intent(INOUT) :: META
character(len = *), intent(IN) :: NAME
type(ESMF_Grid), optional, intent(INout) :: GRID
character(len = *), optional, intent(IN) :: CONFIGFILE
external :: SS
type(ESMF_GridComp), optional, intent(IN) :: parentGC
integer, optional , intent(IN) :: petList(:)
integer, optional , intent(OUT) :: rc

A.2.15.2 From gc

INTERFACE:

recursive integer function MAPL_AddChild (GC, NAME, SS, petList, RC)

ARGUMENTS:

type(ESMF_GridComp), intent(INOUT) :: GC
character(len = *), intent(IN) :: NAME
external :: SS
integer, optional , intent(IN) :: petList(:)
integer, optional , intent(OUT) :: rc

A.2.16 MAPL AddConnectivity

A.2.16.1 Rename

INTERFACE:

subroutine MAPL_AddConnectivity (GC, SRC_NAME, SRC_ID, &
DST_NAME, DST_ID, RC)

73

ARGUMENTS:

type(ESMF_GridComp), intent(INOUT) :: GC ! Gridded component
character (len = *), intent(IN) :: SRC_NAME !FROM_NAME = = SHORT_NAME
character (len = *), intent(IN) :: DST_NAME !TO_NAME
integer, intent(IN) :: SRC_ID !FROM_EXPORT
integer, intent(IN) :: DST_ID !TO_IMPORT
integer, optional, intent(OUT) :: RC ! Error code:

A.2.16.2 Rename many

INTERFACE:

subroutine MAPL_AddConnectivity (GC, SRC_NAME, SRC_ID, &
DST_NAME, DST_ID, RC)

ARGUMENTS:

type(ESMF_GridComp), intent(INOUT) :: GC ! Gridded component
character (len = *), intent(IN) :: SRC_NAME(:)
character (len = *), intent(IN) :: DST_NAME(:)
integer, intent(IN) :: SRC_ID !FROM_EXPORT
integer, intent(IN) :: DST_ID !TO_IMPORT
integer, optional, intent(OUT) :: RC ! Error code:

A.2.16.3 Many

INTERFACE:

subroutine MAPL_AddConnectivity (GC, SHORT_NAME, SRC_ID, DST_ID, RC)

ARGUMENTS:

74

type(ESMF_GridComp), intent(INOUT) :: GC ! Gridded component
character (len = *) , intent(IN) :: SHORT_NAME(:)
integer, intent(IN) :: SRC_ID
integer, intent(IN) :: DST_ID
integer, optional, intent(OUT) :: RC ! Error code:

A.2.17 MAPL TerminateImport

A.2.17.1 Do not connect

INTERFACE:

subroutine MAPL_TerminateImport (GC, SHORT_NAME, CHILD, RC)

ARGUMENTS:

type(ESMF_GridComp), intent(INOUT) :: GC ! Gridded component
character (len = *) , intent(IN) :: SHORT_NAME
integer, intent(IN) :: CHILD
integer, optional, intent(OUT) :: RC ! Error code:

A.2.17.2 Do not connect many

INTERFACE:

subroutine MAPL_TerminateImport (GC, SHORT_NAME, CHILD, RC)

ARGUMENTS:

type(ESMF_GridComp), intent(INOUT) :: GC ! Gridded component
character (len = *) , intent(IN) :: SHORT_NAME(:)
integer, intent(IN) :: CHILD
integer, optional, intent(OUT) :: RC ! Error code:

75

A.2.17.3 Do not connect any import

INTERFACE:

subroutine MAPL_TerminateImport (GC, CHILD, RC)

ARGUMENTS:

type(ESMF_GridComp), intent(INOUT) :: GC ! Gridded component
integer, intent(IN) :: CHILD
integer, optional, intent(OUT) :: RC ! Error code:

A.2.17.4 Terminate import all

INTERFACE:

subroutine MAPL_TerminateImport (GC, ALL, RC)

ARGUMENTS:

type(ESMF_GridComp), intent(INOUT) :: GC ! Gridded component
logical, intent(IN) :: ALL
integer, optional, intent(OUT) :: RC ! Error code:

A.2.18 MAPL TimerOn

A.2.18.1

INTERFACE:

76

subroutine MAPL_TimerOn (STATE,NAME,RC)

ARGUMENTS:

type (MAPL_MetaComp), intent(INOUT) :: STATE
character(len = *), intent(IN) :: NAME
integer, optional, intent(OUT) :: RC ! Error code:

A.2.19 MAPL TimerOff

A.2.19.1

INTERFACE:

subroutine MAPL_TimerOff (STATE,NAME,RC)

ARGUMENTS:

type (MAPL_MetaComp), intent(INOUT) :: STATE
character(len = *), intent(IN) :: NAME
integer, optional, intent(OUT) :: RC ! Error code:

A.2.20 MAPL TimerAdd

A.2.20.1

INTERFACE:

subroutine MAPL_TimerAdd (GC, NAME, RC)

ARGUMENTS:

77

type (ESMF_GridComp), intent(INOUT) :: GC
character(len = *), intent(IN) :: NAME
integer, optional, intent(OUT) :: RC ! Error code:

A.2.21 MAPL GetResource

A.2.21.1 I41

INTERFACE:

subroutine MAPL_GetResource (STATE,VALUE,LABEL,DEFAULT,RC)

ARGUMENTS:

type (MAPL_MetaComp), intent(INOUT) :: STATE
character(len = *), intent(IN) :: LABEL
integer*4, intent(INOUT) :: VALUE(:)
integer*4, optional, intent(IN) :: DEFAULT(:)
integer , optional, intent(OUT) :: RC

A.2.21.2 I4

INTERFACE:

subroutine MAPL_GetResource (STATE,VALUE,LABEL,DEFAULT,RC)

ARGUMENTS:

type (MAPL_MetaComp), intent(INOUT) :: STATE
character(len = *), intent(IN) :: LABEL
integer*4, intent(INOUT) :: VALUE
integer , optional, intent(IN) :: DEFAULT
integer , optional, intent(OUT) :: RC

78

A.2.21.3 I8

INTERFACE:

subroutine MAPL_GetResource (STATE,VALUE,LABEL,DEFAULT,RC)

ARGUMENTS:

type (MAPL_MetaComp), intent(INOUT) :: STATE
character(len = *), intent(IN) :: LABEL
integer(ESMF_KIND_I8), intent(OUT) :: VALUE
integer(ESMF_KIND_I8), optional, intent(IN) :: DEFAULT
integer , optional, intent(OUT) :: RC

A.2.21.4 R4

INTERFACE:

subroutine MAPL_GetResource (STATE,VALUE,LABEL,DEFAULT,RC)

ARGUMENTS:

type (MAPL_MetaComp), intent(INOUT) :: STATE
character(len = *), intent(IN) :: LABEL
real*4, intent(INOUT) :: VALUE
real , optional, intent(IN) :: DEFAULT
integer , optional, intent(OUT) :: RC

79

A.2.21.5 R8

INTERFACE:

subroutine MAPL_GetResource (STATE,VALUE,LABEL,DEFAULT,RC)

ARGUMENTS:

type (MAPL_MetaComp), intent(INOUT) :: STATE
character(len = *), intent(IN) :: LABEL
real(ESMF_KIND_R8), intent(OUT) :: VALUE
real(ESMF_KIND_R8), optional, intent(IN) :: DEFAULT
integer , optional, intent(OUT) :: RC

A.2.21.6 C

INTERFACE:

subroutine MAPL_GetResource (STATE,VALUE,LABEL,DEFAULT,RC)

ARGUMENTS:

type (MAPL_MetaComp), intent(INOUT) :: STATE
character(len = *), intent(IN) :: LABEL
character(len = *), intent(INOUT) :: VALUE
character(len = *), optional, intent(IN) :: DEFAULT
integer , optional, intent(OUT) :: RC

INTERFACE:

logical function MAPL_IsFieldAllocated(FIELD, RC)

80

ARGUMENTS:

type(ESMF_Field), intent(INout) :: FIELD ! Field
integer, optional, intent(OUT) :: RC ! Error code:

DESCRIPTION:

Shortcut for checking that field is allocated

A.2.22 MAPL ReadForcing

A.2.22.1 1

INTERFACE:

subroutine MAPL_ReadForcing (STATE,NAME,DATAFILE,CURRENTTIME, &
FORCING,INIT_ONLY,ON_TILES,RC)

ARGUMENTS:

type (MAPL_MetaComp), intent(INOUT) :: STATE
character(len = *), intent(IN) :: NAME
character(len = *), intent(IN) :: DATAFILE
type (ESMF_Time), intent(INout) :: CURRENTTIME
real, intent(OUT) :: FORCING(:)
logical, optional, intent(IN) :: INIT_ONLY
logical, optional, intent(IN) :: ON_TILES
integer, optional, intent(OUT) :: RC

A.2.22.2 2

INTERFACE:

81

subroutine MAPL_ReadForcing (STATE,NAME,DATAFILE,CURRENTTIME, &
FORCING,INIT_ONLY,RC)

ARGUMENTS:

type (MAPL_MetaComp), intent(INOUT) :: STATE
character(len = *), intent(IN) :: NAME
character(len = *), intent(IN) :: DATAFILE
type (ESMF_Time), intent(INout) :: CURRENTTIME
real, intent(OUT) :: FORCING(:,:)
logical, optional, intent(IN) :: INIT_ONLY
integer, optional, intent(OUT) :: RC

A.3 Module MAPL CFIO — CF Compliant I/O for ESMF

DESCRIPTION:

MAPL CFIO provides Climate and Forecast (CF) compliant I/O methods for high level ESMF
data types by using the CFIO Library. It currently includes read-write support for ESMF
Bundles and States, and read-only support for ESMF Fields and Fortran arrays. The API
consists of 4 basic methods:

• MAPL CFIORead

• MAPL CFIOCreate

• MAPL CFIOWrite

• MAPL CFIODestroy

Reading a file. When reading data from a CFIO compliant file, in the very least the user
needs to specify the file name, the time, and an ESMF object to receive the data. There is
no need to explicitly involve the MAPL CFIO object in this case. For example, assuming that
one has already defined an ESMF grid and clock, here is how to read a single time instance
of all variables from a file into an ESMF Bundle:

bundle = ESMF_BundleCreate (name=’Mary’, grid=grid)
call MAPL_CFIORead (’forecast_data.nc’, clock, bundle)

82

This method will read all variables on file, doing any necessary (horizontal) regriding to
the ESMF grid used to create the bundle, and allocating memory for each variable, as
necessary. Currently, the file is open, read from and subsequently closed. MAPL CFIO also
provides methods to read single variables into a simple fortran arrays:

real :: ps(im,jm)
call MAPL_CFIORead (’surfp’, ’forecast_data.nc’, clock, grid, ps)

This method will read the variable named ’surfp’ into the 2D Fortran array ps, performing
any necessary (horizontal) interpolation to the destination grid. Consult the API reference
below for several optional parameters to the MAPL CFIORead() method, including the
ability to select the variables to read and transparently perform time interpolation.

Writing to a file. For writing, a new file is created, written to, and explicitly closed.
Assuming one has already defined an ESMF bundle and clock here is how to save a
bundle to a new file:

type(MAPL_CFIO) :: mcfio
call MAPL_CFIOcreate (mcfio, ’climate_data’, clock, bundle)
call MAPL_CFIOwrite (mcfio, clock)
call MAPL_CFIOdestroy (mcfio)

Consult the API reference below for many optional parameters controling the behavior of
these methods. As of this writing, a MAPL CFIOopen() function to write to an already
existing file has not been implemented.

File formats. MAPL CFIO is designed to work with a variety of file formats, provided these
files can be annotaded with the necessary CF metadata. The particularities of the specific
file format is handled by the backend CFIO library. As of this writing the backend CFIO
library supports self-describing formats such as NetCDF and HDF, and support for GrADS
compatible binary files is in alpha testing. There are also plans to add support for GRIB
versions 1, 2 or both.

Self-desbring (SDF) formats. The support for SDF formats is implemented in the
backend CFIO library using the NetCDF Version 2 API. This API is currently supported
by NetCDF versions 2 through 4 and HDF version 4. By selecting one of these libraries at
build time it is possible to read/write several versions of NetCDF/HDF as summarized in
the following table:

Library Reads Writes
----------- ------------- ----------------
HDF-4 NetCDF, HDF-4 HDF-4
NetCDF-2 NetCDF NetCDF

83

NetCDF-3 NetCDF NetCDF
NetCDF-4 NetCDF, HDF-5 NetCDF, HDF-5

NetCDF versions 2 and 3 can only read/write its own native NetCDF format. HDF version
4 offers some form of interoperability with NetCDF, but it can only write HDF-4 files. The
new NetCDF version 4 is written on top of the HDF-5 library. This version of NetCDF still
retains the ability of reading and writing its legacy NetCDF format, but advanced features
such as compression is only available when writing in HDF-5 format. Beware that NetCDF-
4 can only read the particular kind of HDF-5 files it writes; it cannot read generic HDF-5
files such has HDF-5 EOS. Because the standard HDF-5 library (without NetCDF-4) no
longer supports the NetCDF 2 API (or the native HDF-4 API for that matter) it cannot
be used with the SDF backend of the CFIO library. It is important to notice that because
of conflicts in the API one cannot load more than one NetCDF or HDF library in one
application.

API Design Issues. The MAPL CFIO package is still under active development. The
current state of the API was dictated by the features needed to build the GEOS-5 model at
NASA/GSFC, and some asymmetry still remains in the API. In particular, the read methods
utilize file names to specify the file object, while the write methods uses the MAPL CFIO
object much like a file handle. Both methods of access are valid and useful under different
circunstances, and ought to be supported for both read and write operations. When using
file name access mode the following should be possible:

call MAPL_CFIORead (’forecast_data.nc’, clock, bundle)
call MAPL_CFIOWrite (’new_file.nc’, clock, bundle)
call MAPL_CFIOWrite (’existing_file.nc’, clock, bundle, append=.true.)

In this case, the file is opened, read from/written to and closed on exit. For users desiring
to keep files open in between operations a file handle mode should be provided for both
read and write. Here is a typical use case for reading:

mcfio = MAPL_CFIOopen (’forecast_data.nc’)
call MAPL_CFIORead (mcfio, clock_now, bundle)
...
call MAPL_CFIORead (mcfio, clock_later, bundle)
call MAPL_CFIOdestroy (mcfio)

Future versions of MAPL CFIO may support these features.

USES:

use ESMF

84

use MAPL_BaseMod
use MAPL_CommsMod
use MAPL_ConstantsMod
use ESMF_CFIOMod
use ESMF_CFIOUtilMod
use ESMF_CFIOFileMod
use MAPL_IOMod
use MAPL_HorzTransformMod
use ESMFL_Mod
use MAPL_ShmemMod
use MAPL_CFIOServerMod

PUBLIC MEMBER FUNCTIONS:

! MAPL-style names
! ----------------
public MAPL_CFIOCreate
public MAPL_CFIOSet
public MAPL_CFIOOpenWrite
public MAPL_CFIOCreateWrite
public MAPL_CFIOClose
public MAPL_CFIOWrite
public MAPL_CFIOWriteBundlePost
public MAPL_CFIOWriteBundleWait
public MAPL_CFIOWriteBundleWrite
public MAPL_CFIORead
public MAPL_CFIODestroy
public MAPL_GetCurrentFile
public MAPL_CFIOIsCreated
public MAPL_CFIOGetFilename
public MAPL_CFIOGetTimeString
public MAPL_CFIOStartAsyncColl
public MAPL_CFIOBcastIONode

! ESMF-style names
! ----------------
public ESMF_ioRead ! another name for MAPL_CFIORead
public ESMF_ioCreate ! another name for MAPL_CFIOCreate
public ESMF_ioWrite ! another name for MAPL_CFIOWrite
public ESMF_ioDestroy ! another name for MAPL_CFIODestroy

85

PUBLIC TYPES:

public MAPL_CFIO

CODE:

type MAPL_CFIO
private
logical :: CREATED = .false.
character(len = ESMF_MAXSTR) :: NAME
character(len = ESMF_MAXSTR) :: fNAME
character(len = ESMF_MAXSTR) :: format
character(len = ESMF_MAXSTR) :: expid
type(ESMF_CFIO) :: CFIO
integer :: XYOFFSET
real :: VSCALE
type(ESMF_TIMEINTERVAL) :: OFFSET
type(ESMF_CLOCK) :: CLOCK
type(ESMF_FIELDBUNDLE) :: BUNDLE
type(ESMF_GridComp) :: GC
type(ESMF_Grid) :: Grid
integer :: Root = MAPL_Root
integer :: PartSize = 1
integer :: myPE
integer :: numcores
integer :: comm
integer :: Order = -1
integer :: Nbits = 1000
integer :: IM, JM, LM
integer, pointer :: SUBSET(:) = > null()
integer, pointer :: VarDims(:) = >null()
integer, pointer :: VarType(:) = >null()
integer, pointer :: needVar(:) = >null()
integer, pointer :: pairList(:) = >null()
character(len = ESMF_MAXSTR), &

pointer :: vectorList(:,:) = >null()
logical :: Vinterp
real :: pow = 0.0
character(len = ESMF_MAXSTR) :: Vvar
character(len = 3) :: Func
character(len = ESMF_MAXSTR), &

86

pointer :: VarName(:) = >null()
integer, pointer :: Krank(:) = >null()
real, pointer :: levs(:)
type(MAPL_CommRequest), &

pointer :: reqs(:) = >null()
type(MAPL_HorzTransform) :: Trans
logical :: async
integer :: AsyncWorkRank
integer :: globalComm

end type MAPL_CFIO

A.3.1 MAPL CFIOCreate — Creates a MAPL CFIO Object

A.3.1.1 Creates MAPL CFIO Object from a Bundle

INTERFACE:

subroutine MAPL_CFIOCreate (MCFIO, NAME, CLOCK, BUNDLE, OFFSET, &
RESOLUTION, SUBSET, CHUNKSIZE, FREQUENCY, LEVELS, DESCR, &
XYOFFSET, VCOORD, VUNIT, VSCALE, &
SOURCE, INSTITUTION, COMMENT, CONTACT, &
FORMAT, EXPID, DEFLATE, GC, ORDER, &
NumCores, nbits, TM, Conservative, &
Async, VectorList, RC)

ARGUMENTS:

type(MAPL_CFIO), intent(OUT) :: MCFIO
character(LEN = *), intent(IN) :: NAME
type(ESMF_FIELDBUNDLE), intent(INout) :: BUNDLE
type(ESMF_CLOCK), intent(INout):: CLOCK
type(ESMF_TIMEINTERVAL), &

optional, intent(INout):: OFFSET
integer, optional, pointer :: RESOLUTION(:)
real, optional, pointer :: SUBSET(:)
integer, optional, pointer :: CHUNKSIZE(:)
integer, optional, intent(IN) :: FREQUENCY
real, optional, pointer :: LEVELS(:)
character(LEN = *),optional, intent(IN) :: DESCR

87

integer, optional, intent(IN) :: XYOFFSET
real, optional, intent(IN) :: VSCALE
integer, optional, intent(IN) :: DEFLATE
character(len = *),optional, intent(IN) :: VUNIT
character(len = *),optional, intent(IN) :: VCOORD
character(len = *),optional, intent(IN) :: source
character(len = *),optional, intent(IN) :: institution
character(len = *),optional, intent(IN) :: comment
character(len = *),optional, intent(IN) :: contact
character(len = *),optional, intent(IN) :: format
character(len = *),optional, intent(IN) :: EXPID
integer, optional, intent(IN) :: Conservative
type(ESMF_GridComp),optional,intent(IN) :: GC
integer, optional, intent(IN) :: Order
integer, optional, intent(IN) :: Nbits
integer, optional, intent(IN) :: NumCores
integer, optional, intent(IN) :: TM
logical, optional, intent(IN) :: Async
character(len = *), pointer,&

optional, intent(IN) :: vectorList(:,:)
integer, optional, intent(OUT) :: RC

DESCRIPTION:

Creates a MAPL CFIO object from a Bundle. The MAPL CFIO objects is opaque and
its properties can only be set by this method at creation. Currently, its properties cannot
be queried. The object is used only as a handle in write operations. It is not needed for
reading.

Its non-optional arguments associate a NAME, an ESMF BUNDLE, and a CLOCK with the object.
An ESMF TimeInterval OFFSET is an optional argument that sets an offset between the time
on the clock when eriting and the time stamp used for the data (defaults to no offset).

The format optional argument determines whether the write will use the linked self-
describing format (SDF) library (HDF or netcdf) or write GrADS readable flat files. Cur-
rently only the SDF library option is supported.

The remaining (optional) arguments are especialized and used primarily to support MAPL History,
or to provide documentation in the form of character strings that will be placed in corre-
sponding attributes in the SDF file. REVISION HISTORY:

19Apr2007 Todling - Added ability to write out ak/bk
- Added experiment ID as optional argument

88

A.3.1.2 Creates MAPL CFIO Object from a State

INTERFACE:

subroutine MAPL_CFIOCreate (MCFIO, NAME, CLOCK, STATE, OFFSET, &
RESOLUTION, SUBSET, CHUNKSIZE, FREQUENCY, &
LEVELS, DESCR, BUNDLE, &
XYOFFSET, VCOORD, VUNIT, VSCALE, &
SOURCE, INSTITUTION, COMMENT, CONTACT, &
FORMAT, EXPID, DEFLATE, GC, ORDER, &
NumCores, nbits, TM, Conservative, RC)

ARGUMENTS:

type(MAPL_CFIO), intent(OUT) :: MCFIO
character(LEN = *), intent(IN) :: NAME
type(ESMF_State), intent(INout) :: STATE
type(ESMF_Clock), intent(INOUT) :: CLOCK
type(ESMF_FieldBundle), optional, pointer :: BUNDLE
type(ESMF_TimeInterval), &

optional, intent(INOUT):: OFFSET
integer, optional, pointer :: RESOLUTION(:)
real, optional, pointer :: SUBSET(:)
integer, optional, pointer :: CHUNKSIZE(:)
integer, optional, intent(IN) :: FREQUENCY
real, optional, pointer :: LEVELS(:)
character(LEN = *),optional, intent(IN) :: DESCR
real, optional, intent(IN) :: VSCALE
character(len = *),optional, intent(IN) :: VUNIT
character(len = *),optional, intent(IN) :: VCOORD
integer, optional, intent(IN) :: XYOFFSET
character(len = *),optional, intent(IN) :: source
character(len = *),optional, intent(IN) :: institution
character(len = *),optional, intent(IN) :: comment
character(len = *),optional, intent(IN) :: contact
character(len = *),optional, intent(IN) :: format
character(len = *),optional, intent(IN) :: EXPID
integer, optional, intent(IN) :: DEFLATE
type(ESMF_GridComp),optional,intent(IN) :: GC

89

integer, optional, intent(IN) :: Order
integer, optional, intent(IN) :: Nbits
integer, optional, intent(IN) :: NumCores
integer, optional, intent(IN) :: TM
integer, optional, intent(IN) :: CONSERVATIVE
integer, optional, intent(OUT) :: RC

DESCRIPTION:

Creates a MAPL CFIO object from a State. States are written by “serializing” all Fields
in them, whether they are directly in the State or are contained within a hierarchy of
embedded Bundles and States, into a single Bundle.

The Method optionally returns a pointer to the serialized ESMF Bundle, but this is not
needed for MAPL Write operations. Otherwise arguments are the same as for CreateFrom-
Bundle.

Its non-optional arguments associate a NAME, an ESMF BUNDLE, and a CLOCK with the object.
An ESMF TimeInterval OFFSET is an optional argument that sets an offset between the time
on the clock when eriting and the time stamp used for the data (defaults to no offset).

The format optional argument determines whether the write will use the linked self-
describing format (SDF) library (HDF or netcdf) or write GrADS readable flat files. Cur-
rently only the SDF library option is supported.

The remaining (optional) arguments are especialized and used primarily to support MAPL History,
or to provide documentation in the form of character strings that will be placed in corre-
sponding attributes in the SDF file. REVISION HISTORY:

12Jun2007 Todling Added EXPID as opt argument

A.3.2 MAPL CFIOWrite — Writing Methods

A.3.2.1 Writes an ESMF Bundle

INTERFACE:

subroutine MAPL_CFIOWrite Post(MCFIO, RC)

90

ARGUMENTS:

type(MAPL_CFIO), intent(INOUT) :: MCFIO
integer, optional, intent(OUT) :: RC

DESCRIPTION:

Writes an ESMF Bundle to a File. Only the MAPL CFIO object is a required argument
as pointers to the actual data to be written is recorded in it during creation.

CLOCK, BUNDLE can be used to override the choice made at creation, but this is of dubious
value, particularly for BUNDLE since it must be excatly conformant with the creation BUNDLE.
NBITS if the number of bits of the mantissa to retain. This is used to write files with
degraded precision, which can then be compressed with standard utilities. The default is
no degradation of precision.

A note about compression. NetCDF-4, HDF-4 and HDF-5 all support transparent
internal GZIP compression of the data being written. However, very little is gained by
compressing float point fields from earth system models. Compression yields can be greatly
increased by setting to zero bits in the mantissa of float numbers. On average 50% compres-
sion can be achieved, while preserving a meaningful accuracy in the fields. Unlike classical
CF compression by means of scale factor and add offset attributes, internal GZIP com-
pression requires no special handling by the users of the data. In fact, they do not even need
to know that the data is compressed! At this point, MAPL CFIO does not activate this
GZIP compression feature in the files being written, but the resulting precision degredaded
files can be compressed offline with the HDF-4 hrepack utility.

A.3.3 MAPL CFIOWrite — Writing Methods

A.3.3.1 Writes an ESMF Bundle

INTERFACE:

subroutine MAPL_CFIOWrite (MCFIO, CLOCK, Bundle, &
VERBOSE, NBITS, RC)

ARGUMENTS:

type(MAPL_CFIO), intent(INOUT) :: MCFIO

91

type(ESMF_CLOCK), optional, intent(INOUT) :: CLOCK
type(ESMF_FIELDBUNDLE), optional, intent(INout) :: BUNDLE
logical, optional, intent(IN) :: VERBOSE
integer, optional, intent(IN) :: NBITS
integer, optional, intent(OUT) :: RC

DESCRIPTION:

Writes an ESMF Bundle to a File. Only the MAPL CFIO object is a required argument
as pointers to the actual data to be written is recorded in it during creation.

CLOCK, BUNDLE can be used to override the choice made at creation, but this is of dubious
value, particularly for BUNDLE since it must be excatly conformant with the creation BUNDLE.
NBITS if the number of bits of the mantissa to retain. This is used to write files with
degraded precision, which can then be compressed with standard utilities. The default is
no degradation of precision.

A note about compression. NetCDF-4, HDF-4 and HDF-5 all support transparent
internal GZIP compression of the data being written. However, very little is gained by
compressing float point fields from earth system models. Compression yields can be greatly
increased by setting to zero bits in the mantissa of float numbers. On average 50% compres-
sion can be achieved, while preserving a meaningful accuracy in the fields. Unlike classical
CF compression by means of scale factor and add offset attributes, internal GZIP com-
pression requires no special handling by the users of the data. In fact, they do not even need
to know that the data is compressed! At this point, MAPL CFIO does not activate this
GZIP compression feature in the files being written, but the resulting precision degredaded
files can be compressed offline with the HDF-4 hrepack utility.

A.3.3.2 Writes an ESMF State

INTERFACE:

subroutine MAPL_CFIOWrite (MCFIO, CLOCK, State, &
VERBOSE, NBITS, RC)

ARGUMENTS:

type(MAPL_CFIO), intent(INOUT) :: MCFIO
type(ESMF_State), intent(INout) :: STATE

92

type(ESMF_CLOCK), intent(INOUT) :: CLOCK
integer, optional, intent(OUT) :: RC
logical, optional, intent(IN) :: VERBOSE
integer, optional, intent(IN) :: NBITS

DESCRIPTION:

Serializes an ESMF state into a Bundle and writes it to a file. Only the MAPL CFIO object
is a required argument as pointers to the actual data to be written is recorded in it during
creation.

CLOCK, BUNDLE can be used to override the choice made at creation, but this is of dubious
value, particularly for BUNDLE since it must be excatly conformant with the creation BUNDLE.
NBITS if the number of bits of the mantissa to retain. This is used to write files with
degraded precision, which can then be compressed with standard utilities. The default is
no degradation of precision.

A note about compression. NetCDF-4, HDF-4 and HDF-5 all support transparent
internal GZIP compression of the data being written. However, very little is gained by
compressing float point fields from earth system models. Compression yields can be greatly
increased by setting to zero bits in the mantissa of float numbers. On average 50% compres-
sion can be achieved, while preserving a meaningful accuracy in the fields. Unlike classical
CF compression by means of scale factor and add offset attributes, internal GZIP com-
pression requires no special handling by the users of the data. In fact, they do not even need
to know that the data is compressed! At this point, MAPL CFIO does not activate this
GZIP compression feature in the files being written, but the resulting precision degredaded
files can be compressed offline with the HDF-4 hrepack utility.

A.3.4 MAPL CFIORead — Reading Methods

A.3.4.1 Reads an ESMF Bundle

INTERFACE:

subroutine MAPL_CFIORead (FILETMPL, TIME, BUNDLE, NOREAD, RC, &
VERBOSE, FORCE_REGRID, ONLY_VARS, &
TIME_IS_CYCLIC, TIME_INTERP, EXPID)

ARGUMENTS:

93

character(len = *), intent(IN) :: FILETMPL
type(ESMF_TIME), intent(INout) :: TIME
type(ESMF_FIELDBUNDLE), intent(INOUT) :: BUNDLE
logical, optional, intent(IN) :: NOREAD
integer, optional, intent(OUT) :: RC
logical, optional, intent(IN) :: VERBOSE
logical, optional, intent(IN) :: FORCE_REGRID
logical, optional, intent(IN) :: TIME_IS_CYCLIC
logical, optional, intent(IN) :: TIME_INTERP
character(len = *), optional, intent(IN) :: ONLY_VARS
character(len = *), optional, intent(IN) :: EXPID

DESCRIPTION:

Reads an ESMF Bundle from a file on a given time. The file is open, read from, and closed
on exit. The arguments are:

FILETMPL A GrADS-style file name template. In its simplest form is the full path
name for the file to be read. However, it can contain the following tokens which will
be expanded from the current time in TIME:

%y4 4 digits for year

%m2 2 digits for month, to expand to 01, 02, .., 12

%m3 3 digits for month, to expand to jan, feb, mar, ..., dec

%d2 2 digits for day

%h2 2 digits for hour

%n2 2 digits for minutes

Example: if FILETMPL = “forecast.%y4-%m2-%d2 says it is 18Z on 05 Febru-
ary 2007, the template will expand in the following file name: “forecast.2007-02-
05 18Z.nc4”

TIME The ESMF time to read from the file

BUNDLE An ESMF Bundle to read the data in. When the Bundle is empty one field is
added for each variable present in the input file, and the necessary memory allocated
according to the ESMF grid present in the Bundle.

[NOREAD] If .TRUE., no data is actually read into the Bundle. This is useful to define
a Bundle with the same variables as presented in the file, which in turn can be used
to created a MAPL CFIO object for writing.

[RC] Error return code; set to ESMF SUCCESS if all is well.

[VERBOSE] If .TRUE., prints progress messages to STDOUT; useful for debugging.

94

[FORCE REGRID] Obsolete; kept for backward compatibility but has no effect.

[TIME IS CYCLIC] If .TRUE. it says that the input file is periodic in time. Useful for
reading climatological files. For example, if the input file has 12 monthly means from
January to December of 2001, setting this option to .TRUE. allows one to read this
data for any other year. See note below regarding issues with reading monthly mean
data.

[TIME INTERP] If .TRUE., the input file does not have to coincide with the actual
times on file. In such cases, the data for the bracketing times are read and the data
is properly interpolated in time. The input time, though, need to be within the range
of times present on file (unless TIME IS CYCLIC is specified).

[ONLY VARS] A list of comma separated vafriables to be read from the file. By default,
all variables are read from the file. This option allows one to read a subset of vafriables.
Example: ONLY VARS = “u,v,ps”.

A note about storing monthly climatological data. As per the CF conventions,
month is not a well defined unit of time, as the time step is not constant throughout the
year. When storing 12 months of climatological data one way around it is to use an average
number of hours: use 732 or 730 hours depending on whether the year recorded in the file
is a leap-year or not.

DESIGN ISSUES:

The input argument TIME should be replaced with CLOCK for consistency with the rest of
the API. One should also provide an interface involving the MAPL CFIO object.

A.3.4.2 Reads an ESMF State

INTERFACE:

subroutine MAPL_CFIORead (FILETMPL, TIME, STATE, NOREAD, RC, &
VERBOSE, FORCE_REGRID, ONLY_VARS, &
TIME_IS_CYCLIC, TIME_INTERP)

ARGUMENTS:

character(len = *), intent(IN) :: FILETMPL
type(ESMF_TIME), intent(INout) :: TIME
type(ESMF_STATE), intent(INOUT) :: STATE

95

logical, optional, intent(IN) :: NOREAD
integer, optional, intent(OUT) :: RC
logical, optional, intent(IN) :: VERBOSE
logical, optional, intent(IN) :: FORCE_REGRID ! obsolete
logical, optional, intent(IN) :: TIME_IS_CYCLIC
logical, optional, intent(IN) :: TIME_INTERP
character(len = *), optional, intent(IN) :: ONLY_VARS ! comma separated,

! no spaces

DESCRIPTION:

Serializes an ESMF state into a Bundle and reads its content from a file. The file is open,
read from, and closed on exit. The arguments are:

FILETMPL A GrADS-style file name template. In its simplest form is the full path
name for the file to be read. However, it can contain the following tokens which will
be expanded from the current time in TIME:

%y4 4 digits for year
%m2 2 digits for month, to expand to 01, 02, .., 12
%m3 3 digits for month, to expand to jan, feb, mar, ..., dec
%d2 2 digits for day
%h2 2 digits for hour
%n2 2 digits for minutes

Example: if FILETMPL = “forecast.%y4-%m2-%d2 says it is 18Z on 05 Febru-
ary 2007, the template will expand in the following file name: “forecast.2007-02-
05 18Z.nc4”

TIME The ESMF time to read from the file

STATE An ESMF State to read the data in. Usually used in conjubction with ONLY VARS.

[NOREAD] If .TRUE., no data is actually read into the Bundle. This is useful to define
a Bundle with the same variables as presented in the file, which in turn can be used
to created a MAPL CFIO object for writing.

[RC] Error return code; set to ESMF SUCCESS if all is well.

[VERBOSE] If .TRUE., prints progress messages to STDOUT; useful for debugging.

[FORCE REGRID] Obsolete; kept for backward compatibility but has no effect.

[TIME IS CYCLIC] If .TRUE. it says that the input file is periodic in time. Useful for
reading climatological files. For example, if the input file has 12 monthly means from
January to December of 2001, setting this option to .TRUE. allows one to read this
data for any other year. See note below regarding issues with reading monthly mean
data.

96

[TIME INTERP] If .TRUE., the input file does not have to coincide with the actual
times on file. In such cases, the data for the bracketing times are read and the data
is properly interpolated in time. The input time, though, need to be within the range
of times present on file (unless TIME IS CYCLIC is specified).

[ONLY VARS] A list of comma separated vafriables to be read from the file. By default,
all variables are read from the file. This option allows one to read a subset of vafriables.
Example: ONLY VARS = “u,v,ps”.

DESIGN ISSUES:

The input argument TIME should be replaced with CLOCK for consistency with the rest of
the API. One should also provide an interface involving the MAPL CFIO object.

A.3.4.3 Reads an ESMF Field

INTERFACE:

subroutine MAPL_CFIORead (VARN, FILETMPL, TIME, FIELD, RC, &
VERBOSE, FORCE_REGRID, TIME_IS_CYCLIC, &
TIME_INTERP)

ARGUMENTS:

character(len = *), intent(IN) :: VARN ! Variable name
character(len = *), intent(IN) :: FILETMPL ! File name
type(ESMF_TIME), intent(INout) :: TIME
type(ESMF_FIELD), intent(INout) :: FIELD
integer, optional, intent(OUT) :: RC
logical, optional, intent(IN) :: VERBOSE
logical, optional, intent(IN) :: FORCE_REGRID
logical, optional, intent(IN) :: TIME_IS_CYCLIC
logical, optional, intent(IN) :: TIME_INTERP

DESCRIPTION:

Reads a variable from a file and stores it on an ESMF Field. The file is open, read from,
and closed on exit. The arguments are:

97

VARN The variable name.

FILETMPL A GrADS-style file name template. In its simplest form is the full path
name for the file to be read. However, it can contain the following tokens which will
be expanded from the current time in TIME:

%y4 4 digits for year

%m2 2 digits for month, to expand to 01, 02, .., 12

%m3 3 digits for month, to expand to jan, feb, mar, ..., dec

%d2 2 digits for day

%h2 2 digits for hour

%n2 2 digits for minutes

Example: if FILETMPL = “forecast.%y4-%m2-%d2 says it is 18Z on 05 Febru-
ary 2007, the template will expand in the following file name: “forecast.2007-02-
05 18Z.nc4”

TIME The ESMF time to read from the file

[RC] Error return code; set to ESMF SUCCESS if all is well.

[VERBOSE] If .TRUE., prints progress messages to STDOUT; useful for debugging.

[FORCE REGRID] Obsolete; kept for backward compatibility but has no effect.

[TIME IS CYCLIC] If .TRUE. it says that the input file is periodic in time. Useful for
reading climatological files. For example, if the input file has 12 monthly means from
January to December of 2001, setting this option to .TRUE. allows one to read this
data for any other year. See note below regarding issues with reading monthly mean
data.

[TIME INTERP] If .TRUE., the input file does not have to coincide with the actual
times on file. In such cases, the data for the bracketing times are read and the data
is properly interpolated in time. The input time, though, need to be within the range
of times present on file (unless TIME IS CYCLIC is specified).

[ONLY VARS] A list of comma separated vafriables to be read from the file. By default,
all variables are read from the file. This option allows one to read a subset of vafriables.
Example: ONLY VARS = “u,v,ps”.

DESIGN ISSUES:

The input argument TIME should be replaced with CLOCK for consistency with the rest of
the API. The input GRID is not necessary as it can be found inside the field. One should
also provide an interface involving the MAPL CFIO object.

98

A.3.4.4 Reads a 3D Fortran Array

INTERFACE:

subroutine MAPL_CFIORead (VARN, FILETMPL, TIME, GRID, farrayPtr, RC, &
VERBOSE, FORCE_REGRID, TIME_IS_CYCLIC, &
TIME_INTERP)

ARGUMENTS:

character(len = *), intent(IN) :: VARN ! Variable name
character(len = *), intent(IN) :: FILETMPL ! File name
type(ESMF_TIME), intent(INout) :: TIME
type(ESMF_GRID), intent(IN) :: GRID
real, pointer :: farrayPtr(:,:,:)
integer, optional, intent(OUT) :: RC
logical, optional, intent(IN) :: VERBOSE
logical, optional, intent(IN) :: FORCE_REGRID
logical, optional, intent(IN) :: TIME_IS_CYCLIC
logical, optional, intent(IN) :: TIME_INTERP

DESCRIPTION:

Reads a variable from a file and stores it on an 3D Fortrran array. The file is open, read
from, and closed on exit. The arguments are:

VARN The variable name.

FILETMPL A GrADS-style file name template. In its simplest form is the full path
name for the file to be read. However, it can contain the following tokens which will
be expanded from the current time in TIME:

%y4 4 digits for year

%m2 2 digits for month, to expand to 01, 02, .., 12

%m3 3 digits for month, to expand to jan, feb, mar, ..., dec

%d2 2 digits for day

%h2 2 digits for hour

%n2 2 digits for minutes

Example: if FILETMPL = “forecast.%y4-%m2-%d2 says it is 18Z on 05 Febru-
ary 2007, the template will expand in the following file name: “forecast.2007-02-
05 18Z.nc4”

99

TIME The ESMF time to read from the file

GRID The ESMF grid associated with the Field. The data will be (horizontally) interpo-
lated to this grid if necessary.

[RC] Error return code; set to ESMF SUCCESS if all is well.

[VERBOSE] If .TRUE., prints progress messages to STDOUT; useful for debugging.

[FORCE REGRID] Obsolete; kept for backward compatibility but has no effect.

[TIME IS CYCLIC] If .TRUE. it says that the input file is periodic in time. Useful for
reading climatological files. For example, if the input file has 12 monthly means from
January to December of 2001, setting this option to .TRUE. allows one to read this
data for any other year. See note below regarding issues with reading monthly mean
data.

[TIME INTERP] If .TRUE., the input file does not have to coincide with the actual
times on file. In such cases, the data for the bracketing times are read and the data
is properly interpolated in time. The input time, though, need to be within the range
of times present on file (unless TIME IS CYCLIC is specified).

[ONLY VARS] A list of comma separated vafriables to be read from the file. By default,
all variables are read from the file. This option allows one to read a subset of vafriables.
Example: ONLY VARS = “u,v,ps”.

DESIGN ISSUES:

The input argument TIME should be replaced with CLOCK for consistency with the rest of
the API. One should also provide an interface involving the MAPL CFIO object.

A.3.4.5 Reads a 2D Fortran Array

INTERFACE:

subroutine MAPL_CFIORead (VARN, FILETMPL, TIME, GRID, farrayPtr, RC, &
VERBOSE, FORCE_REGRID, TIME_IS_CYCLIC, &
TIME_INTERP)

ARGUMENTS:

character(len = *), intent(IN) :: VARN ! Variable name

100

character(len = *), intent(IN) :: FILETMPL ! File name
type(ESMF_TIME), intent(INout) :: TIME
type(ESMF_GRID), intent(IN) :: GRID
real, pointer :: farrayPtr(:,:)
integer, optional, intent(OUT) :: RC
logical, optional, intent(IN) :: VERBOSE
logical, optional, intent(IN) :: FORCE_REGRID
logical, optional, intent(IN) :: TIME_IS_CYCLIC
logical, optional, intent(IN) :: TIME_INTERP

DESCRIPTION:

Reads a variable from a file and stores it on an 3D Fortrran array. The file is open, read
from, and closed on exit. The arguments are:

VARN The variable name.

FILETMPL A GrADS-style file name template. In its simplest form is the full path
name for the file to be read. However, it can contain the following tokens which will
be expanded from the current time in TIME:

%y4 4 digits for year

%m2 2 digits for month, to expand to 01, 02, .., 12

%m3 3 digits for month, to expand to jan, feb, mar, ..., dec

%d2 2 digits for day

%h2 2 digits for hour

%n2 2 digits for minutes

Example: if FILETMPL = “forecast.%y4-%m2-%d2 says it is 18Z on 05 Febru-
ary 2007, the template will expand in the following file name: “forecast.2007-02-
05 18Z.nc4”

TIME The ESMF time to read from the file

GRID The ESMF grid associated with the Field. The data will be (horizontally) interpo-
lated to this grid if necessary.

[RC] Error return code; set to ESMF SUCCESS if all is well.

[VERBOSE] If .TRUE., prints progress messages to STDOUT; useful for debugging.

[FORCE REGRID] Obsolete; kept for backward compatibility but has no effect.

101

[TIME IS CYCLIC] If .TRUE. it says that the input file is periodic in time. Useful for
reading climatological files. For example, if the input file has 12 monthly means from
January to December of 2001, setting this option to .TRUE. allows one to read this
data for any other year. See note below regarding issues with reading monthly mean
data.

[TIME INTERP] If .TRUE., the input file does not have to coincide with the actual
times on file. In such cases, the data for the bracketing times are read and the data
is properly interpolated in time. The input time, though, need to be within the range
of times present on file (unless TIME IS CYCLIC is specified).

[ONLY VARS] A list of comma separated vafriables to be read from the file. By default,
all variables are read from the file. This option allows one to read a subset of vafriables.
Example: ONLY VARS = “u,v,ps”.

DESIGN ISSUES:

The input argument TIME should be replaced with CLOCK for consistency with the rest of
the API. One should also provide an interface involving the MAPL CFIO object.

A.3.5 MAPL CFIODestroy — Destroys MAPL CFIO Object

INTERFACE:

subroutine MAPL_CFIODestroy(MCFIO, RC)

ARGUMENTS:

type(MAPL_CFIO), intent(INOUT) :: MCFIO
integer, optional, intent(OUT) :: RC

DESCRIPTION:

Destroys a MAPL CFIO object. It closes any file associated with it and deallocates memory.

A.3.6 MAPL CFIOClose — Close file in MAPL CFIO Object

INTERFACE:

102

subroutine MAPL_CFIOClose(MCFIO, filename, RC)

ARGUMENTS:

type(MAPL_CFIO), intent(INOUT) :: MCFIO
character(len = *), optional, intent(IN) :: filename
integer, optional, intent(OUT) :: RC

DESCRIPTION:

Not a full destroy; only closes the file.

A.4 Module MAPL LocStreamMod – Manipulate location
streams

USES:

use ESMF
use ESMFL_Mod
use MAPL_BaseMod
use MAPL_ConstantsMod
use MAPL_IOMod
use MAPL_CommsMod
use MAPL_HashMod
use MAPL_ShmemMod

PUBLIC MEMBER FUNCTIONS:

public MAPL_LocStreamCreate
public MAPL_LocStreamAdjustNsubtiles
public MAPL_LocStreamTransform
public MAPL_LocStreamIsAssociated
public MAPL_LocStreamXformIsAssociated
public MAPL_LocStreamGet
public MAPL_LocStreamCreateXform

103

public MAPL_LocStreamFracArea
public MAPL_GridCoordAdjust
public MAPL_LocStreamTileWeight

INCLUDE ’mpif.h’

PUBLIC TYPES:

type, public :: MAPL_LocStream
type(MAPL_LocStreamType), pointer :: Ptr = >null()

end type MAPL_LocStream

type, public :: MAPL_LocStreamXform
type(MAPL_LocStreamXformType), pointer :: Ptr = >null()

end type MAPL_LocStreamXform

A.4.1 MAPL LocStreamCreate

A.4.1.1 Create from file

INTERFACE:

subroutine MAPL_LocStreamCreate (LocStream, LAYOUT, FILENAME, NAME, MASK, GRID, NewGridNames, RC)

ARGUMENTS:

type(MAPL_LocStream), intent(OUT) :: LocStream
type(ESMF_DELayout), intent(IN) :: LAYOUT
character(len = *), intent(IN) :: FILENAME
character(len = *), intent(IN) :: NAME
integer, optional, intent(IN) :: MASK(:)
type(ESMF_Grid), optional, intent(INout) :: GRID
logical, optional, intent(IN) :: NewGridNames
integer, optional, intent(OUT) :: RC

104

DESCRIPTION:

Creates a location stream from a file. This does not decompose the location stream; so
the global stream is described in each processor. The stream can be decomposed later in
various ways. Currently we only decompose it by ”attaching” it to a decomposed grid.

A.4.1.2 Create from stream

INTERFACE:

subroutine MAPL_LocStreamCreate (LocStreamOut, LocStreamIn, NAME, MASK, RC)

ARGUMENTS:

type(MAPL_LocStream), intent(OUT) :: LocStreamOut
type(MAPL_LocStream), intent(IN) :: LocStreamIn
character(len = *), intent(IN) :: NAME
integer, optional, intent(IN) :: MASK(:)
integer, optional, intent(OUT) :: RC

DESCRIPTION:

Creates a location stream as a subset of another according to mask.

A.4.2 MAPL LocStreamTransform

A.4.2.1 Transform field

INTERFACE:

subroutine MAPL_LocStreamTransform (LocStream, OUTPUT, INPUT, MASK, &
GRID_ID, GLOBAL, ISMINE, INTERP, RC)

105

ARGUMENTS:

type(ESMF_Field), intent(OUT) :: OUTPUT
type(ESMF_Field), intent(INout) :: INPUT
type(MAPL_LocStream), intent(IN) :: LocStream
integer, optional, intent(IN) :: MASK(:)
logical, optional, intent(IN) :: ISMINE(:), INTERP
logical, optional, intent(IN) :: GLOBAL
integer, optional, intent(IN) :: GRID_ID
integer, optional, intent(OUT) :: RC

A.4.2.2 T2G

INTERFACE:

subroutine MAPL_LocStreamTransform (LocStream, OUTPUT, INPUT, MASK, SAMPLE, TRANSPOSE, RC)

ARGUMENTS:

type(MAPL_LocStream), intent(IN) :: LocStream
real, intent(INOUT) :: OUTPUT(:,:)
real, intent(INOUT) :: INPUT(:)
logical, optional, intent(IN) :: MASK(:)
logical, optional, intent(IN) :: SAMPLE
logical, optional, intent(IN) :: TRANSPOSE
integer, optional, intent(OUT) :: RC

A.4.2.3 G2T

INTERFACE:

subroutine MAPL_LocStreamTransform (LocStream, OUTPUT, INPUT, &
MASK, GRID_ID, GLOBAL, ISMINE, &
INTERP, TRANSPOSE, RC)

106

ARGUMENTS:

type(MAPL_LocStream), intent(IN) :: LocStream
real, intent(INOUT) :: OUTPUT(:)
real, intent(INOUT) :: INPUT(:,:)
logical, optional, intent(IN) :: MASK(:), ISMINE(:), INTERP
logical, optional, intent(IN) :: GLOBAL
integer, optional, intent(IN) :: GRID_ID
logical, optional, intent(IN) :: TRANSPOSE
integer, optional, intent(OUT) :: RC

A.4.2.4 T2T

INTERFACE:

subroutine MAPL_LocStreamTransform (OUTPUT, XFORM, INPUT, RC)

ARGUMENTS:

real, intent(OUT) :: OUTPUT(:)
type(MAPL_LocStreamXform), intent(IN) :: XFORM
real, intent(IN) :: INPUT(:)
integer, optional, intent(OUT) :: RC

A.4.2.5 T2TR4R8

INTERFACE:

subroutine MAPL_LocStreamTransform (OUTPUT, XFORM, INPUT, RC)

ARGUMENTS:

107

real(kind = ESMF_KIND_R8), intent(OUT) :: OUTPUT(:)
type(MAPL_LocStreamXform), intent(IN) :: XFORM
real, intent(IN) :: INPUT(:)
integer, optional, intent(OUT) :: RC

A.4.2.6 T2TR8R4

INTERFACE:

subroutine MAPL_LocStreamTransform (OUTPUT, XFORM, INPUT, RC)

ARGUMENTS:

real, intent(OUT) :: OUTPUT(:)
type(MAPL_LocStreamXform), intent(IN) :: XFORM
real(kind = ESMF_KIND_R8), intent(IN) :: INPUT(:)
integer, optional, intent(OUT) :: RC

A.5 Module MAPL BaseMod — A Collection of Assorted
MAPL Utilities

USES:

use ESMF
use MAPL_ConstantsMod, only: MAPL_PI, MAPL_PI_R8

PUBLIC MEMBER FUNCTIONS:

public MAPL_AllocateCoupling ! Atanas: please provide 1-line for each
public MAPL_FieldAllocCommit

108

public MAPL_FieldF90Deallocate
public MAPL_Asrt
public MAPL_ClimInterpFac
public MAPL_ConnectCoupling
public MAPL_DecomposeDim
public MAPL_FieldCreate
public MAPL_FieldCreateEmpty
public MAPL_FieldGetTime
public MAPL_FieldSetTime
public MAPL_GridGet
public MAPL_IncYMD
public MAPL_Interp_Fac
public MAPL_LatLonGridCreate ! Creates regular Lat/Lon ESMF Grids
public MAPL_Nhmsf
public MAPL_Nsecf2
public MAPL_PackTime
public MAPL_RemapBounds
public MAPL_Rtrn
public MAPL_Tick
public MAPL_TimeStringGet
public MAPL_UnpackTime
public MAPL_Vrfy
public MAPL_RmQualifier
public MAPL_GetImsJms
public MAPL_AttributeSet
public MAPL_SetPointer
public MAPL_FieldCopyAttributes
public MAPL_StateAdd
public MAPL_FieldBundleAdd
public MAPL_FieldBundleGet
public MAPL_FieldDestroy
public MAPL_FieldBundleDestroy
public MAPL_GetHorzIJIndex
public MAPL_GenGridName
public MAPL_GeosNameNew
public MAPL_Communicators

!PUBLIC PARAMETERS
integer, public, parameter :: MAPL_CplUNKNOWN = 0
integer, public, parameter :: MAPL_CplSATISFIED = 1
integer, public, parameter :: MAPL_CplNEEDED = 2
integer, public, parameter :: MAPL_CplNOTNEEDED = 4
integer, public, parameter :: MAPL_FriendlyVariable = 8
integer, public, parameter :: MAPL_FieldItem = 8
integer, public, parameter :: MAPL_BundleItem = 16

109

integer, public, parameter :: MAPL_NoRestart = 32

integer, public, parameter :: MAPL_Write2Disk = 0
integer, public, parameter :: MAPL_Write2RAM = 1

integer, public, parameter :: MAPL_VLocationNone = 0
integer, public, parameter :: MAPL_VLocationEdge = 1
integer, public, parameter :: MAPL_VLocationCenter = 2

integer, public, parameter :: MAPL_DimsUnknown = 0
integer, public, parameter :: MAPL_DimsVertOnly = 1
integer, public, parameter :: MAPL_DimsHorzOnly = 2
integer, public, parameter :: MAPL_DimsHorzVert = 3
integer, public, parameter :: MAPL_DimsTileOnly = 4
integer, public, parameter :: MAPL_DimsTileTile = 5

integer, public, parameter :: MAPL_ScalarField = 1
integer, public, parameter :: MAPL_VectorField = 2

integer, public, parameter :: MAPL_CplAverage = 0
integer, public, parameter :: MAPL_CplMin = 1
integer, public, parameter :: MAPL_CplMax = 2
integer, public, parameter :: MAPL_MinMaxUnknown = MAPL_CplAverage

integer, public, parameter :: MAPL_AttrGrid = 1
integer, public, parameter :: MAPL_AttrTile = 2

integer, public, parameter :: MAPL_UnInitialized = 0
integer, public, parameter :: MAPL_InitialDefault = 1
integer, public, parameter :: MAPL_InitialRestart = 2

integer, public, parameter :: MAPL_DuplicateEntry = -99
integer, public, parameter :: MAPL_Self = 0
integer, public, parameter :: MAPL_Import = 1
integer, public, parameter :: MAPL_Export = 2
integer, public, parameter :: MAPL_ConnUnknown = -1
integer, public, parameter :: MAPL_FirstPhase = 1
integer, public, parameter :: MAPL_SecondPhase = MAPL_FirstPhase+1
integer, public, parameter :: MAPL_ThirdPhase = MAPL_FirstPhase+2
integer, public, parameter :: MAPL_FourthPhase = MAPL_FirstPhase+3
integer, public, parameter :: MAPL_FifthPhase = MAPL_FirstPhase+4

real, public, parameter :: MAPL_UNDEF = 1.0e15

110

integer, public, parameter :: MAPL_Ocean = 0
integer, public, parameter :: MAPL_Lake = 19
integer, public, parameter :: MAPL_LandIce = 20
integer, public, parameter :: MAPL_Land = 100
integer, public, parameter :: MAPL_Vegetated = 101

integer, public, parameter :: MAPL_NumVegTypes = 6

integer, public, parameter :: MAPL_HorzTransOrderBinning = 0
integer, public, parameter :: MAPL_HorzTransOrderBilinear = 1
integer, public, parameter :: MAPL_HorzTransOrderSample = 99

character(len = ESMF_MAXSTR), public, parameter :: MAPL_StateItemOrderList = ’MAPL_StateItemOrderList’
character(len = ESMF_MAXSTR), public, parameter :: MAPL_BundleItemOrderList = ’MAPL_BundleItemOrderList’

type MAPL_Communicators
integer :: maplComm
integer :: esmfComm
integer :: ioComm
integer :: maplCommSize
integer :: esmfCommSize
integer :: ioCommSize
integer :: ioCommRoot
integer :: myGlobalRank
integer :: myIoRank
integer :: CoresPerNode
integer :: maxMem ! maximum memory per node in megabytes

end type MAPL_Communicators

DESCRIPTION:

The module MAPL Base provides a collection assorted utilities and constants used throughout
the MAPL Library.

A.5.1 MAPL LatLonGridCreate — Create regular Lat/Lon Grid

INTERFACE:

111

function MAPL_LatLonGridCreate (Name, vm, &
Config, ConfigFile, &
Nx, Ny, &
IM_World, BegLon, DelLon, &
JM_World, BegLat, DelLat, &
LM_World, &
rc) &

result(Grid)

INPUT PARAMETERS:

character(len = *), intent(in) :: Name
type (ESMF_VM), OPTIONAL, target, &

intent(in) :: VM

There are 3 possibilities to provide the coordinate information:

! 1) Thru Config object:
type(ESMF_Config), OPTIONAL, target, &

intent(in) :: Config

! 2) Thru a resource file:
character(len = *), OPTIONAL, intent(in) :: ConfigFile

! 3) Thru argument list:
integer, OPTIONAL, intent(in) :: Nx, Ny ! Layout
integer, OPTIONAL, intent(in) :: IM_World ! Zonal
real, OPTIONAL, intent(in) :: BegLon, DelLon ! in degrees

integer, OPTIONAL, intent(in) :: JM_World ! Meridional
real, OPTIONAL, intent(in) :: BegLat, DelLat ! in degrees

integer, OPTIONAL, intent(in) :: LM_World ! Vertical

OUTPUT PARAMETERS:

type (ESMF_Grid) :: Grid ! Distributed grid
integer, OPTIONAL, intent(out) :: rc ! return code

112

DESCRIPTION:

This routine creates a distributed ESMF grid where the horizontal coordinates are regular
longitudes and latitudes. The grid is created on the user specified VM, or on the current
VM if the user does not specify one. The layout and the coordinate information can be
provided with a ESMF Config attribute, a resource file name or specified through the
argument list.

Using resource files

The resource file ConfigFile has a syntax similar to a GrADS control file. Here is an
example defining a typical GEOS-5 1x1.25 grid with 72 layers:

GDEF: LatLon
IDEF: 32
JDEF: 16
LDEF: 1
XDEF: 288 LINEAR -180. 1.25
YDEF: 181 LINEAR -90. 1.
ZDEF: 72 LINEAR 1 1

More generally,

GDEF: LatLon
IDEF: Nx
JDEF: Ny
LDEF: Nz
XDEF: IM_World XCoordType BegLon, DelLon
YDEF: JM_World YCoordType BegLat, DelLat
ZDEF: LM_World ZCoordType 1 1

The attribute GDEF must always be LatLon for Lat/Lon grids. The remaining parameters
are:

Nx is the number of processors used to decompose the X dimension

Ny is the number of processors used to decompose the Y dimension

Nz is the number of processors used to decompose the Z dimension; must be 1 for now.

113

IM World is the number of longitudinal grid points; if IM World = 0 then the grid has
no zonal dimension.

XCoordType must be set to LINEAR

BegLon is the longitude (in degrees) of the center of the first gridbox

DelLon is the constant mesh size (in degrees); if DelLon<1 then a global grid is assumed.

JM World is the number of meridional grid points if JM World = 0 then the grid has no
meridional dimension.

YCoordType must be set to LINEAR

BegLat is the latitude (in degrees) of the center of the first gridbox

DelLat is the constant mesh size (in degrees); if DelLat<1 then a global grid is assumed.

LM World is the number of vertical grid points; if LM World = 0 then the grid has no
vertical dimension.

As of this writing, only the size of the vertical grid (LM World) needs to be specified.

Passing an ESMF Config

The ESMF Config object Config, when specified, must contain the same information as
the resource file above.

subsubsection*Providing parameters explicitly through the argument list

Alternatively, one can specify coordinate information in the argument list; their units and
meaning is as in the resource file above. In this case you must specify at least Nx, Ny,
IM World, JM World, and LM World. The other parameters have default values

BegLon defaults to -180. (the date line)

DelLon defaults to -1. (meaning a global grid)

BegLat defaults to -90. (the south pole)

DelLat deaults to -1. (meaning a global grid)

Restrictions

The current implementation imposes the following restrictions:

114

1. Only uniform longitude/latitude grids are supported (no Gaussian grids).

2. Only 2D Lon-Lat or 3D Lon-Lat-Lev grids are currently supported (no Lat-Lev or
Lon-Lev grids supprted yet).

3. No vertical decomposition yet (Nz = 1).

Future enhancements

The IDEF/JDEF/LDEF records in the resource file should be extended as to allow specification
of a more general distribution. For consistency with the XDEF/YDEF/ZDEF records a similar
syntax could be adopted. For example,

IDEF 4 LEVELS 22 50 50 22
XDEF 144 LINEAR -180 2.5

would indicate that longitudes would be decomposed in 4 PETs, with the first PET having
22 grid points, the second 50 gridpoints, and so on.

A.5.2 MAPL GetHorzIJIndex – Get indexes on destributed ESMF grid
for an arbitary lat and lon

INTERFACE:

subroutine MAPL_GetHorzIJIndex(lon,lat,npts,Grid,II,JJ,rc)

ARGUMENTS:

real, intent(in) :: lon(:) ! array of longitudes in radians
real, intent(in) :: lat(:) ! array of latitudes in radians
integer, intent(in) :: npts ! number of points in lat and lon arrays
type(ESMF_Grid), intent(inout) :: Grid ! ESMF grid
integer, intent(inout) :: II(:) ! array of the first index for each lat and lon
integer, intent(inout) :: JJ(:) ! array of the second index for each lat and lon
integer, optional, intent(out) :: rc ! return code

!DESCRIPTION
For a set of longitudes and latitudes in radians this routine will return the indexes for the distributed domain.

115

If the Lat/Lon pair is not in the domain -1 is returned.
The routine works for both the gmao cube and lat/lon grids.
Currently the lat/lon grid is asumed to go from -180 to 180

A.6 Module ESMFL MOD

USES:

use ESMF
use MAPL_ConstantsMod
use MAPL_BaseMod
use MAPL_CommsMod

ALT These need to be changed!!! values here are just to compile

DEFINED PARAMETERS:

integer, parameter, public :: ESMFL_UnitsRadians = 99

PUBLIC MEMBER FUNCTIONS:

public ESMFL_StateGetField
public ESMFL_StateGetFieldArray
public ESMFL_StateGetPointerToData
public ESMFL_BundleGetPointerToData
public ESMFL_BundleCpyField
public ESMFL_GridCoordGet
! public ESMFL_Connect2STATE
public ESMFL_FCOLLECT
public ESMF_GRID_INTERIOR
public ESMFL_StateFreePointers
public ESMFL_StateSetFieldNeeded
public ESMFL_StateFieldIsNeeded
public ESMFL_FieldGetDims
public ESMFL_GridDistBlockSet

116

public ESMFL_FieldRegrid ! alt: this should be MAPL_FieldRegrid
! (topo_bin may need to be here)

public ESMFL_RegridStore ! only used for regridding using ESMF_FieldRegrid
public ESMFL_Regrid
public ESMFL_Diff
public ESMFL_State2Bundle
public ESMFL_Bundle2State
public ESMFL_Bundles2Bundle
public ESMFL_Add2Bundle
public ESMFL_HALO
public ESMFL_BundleAddState
public MAPL_AreaMean

A.6.1 ESMFL GridCoordGet - retrieves the coordinates of a particular
axis

INTERFACE:

subroutine ESMFL_GridCoordGet(GRID, coord, name, Location, Units, rc)

ARGUMENTS:

type(ESMF_Grid), intent(INout) :: GRID
real, dimension(:,:), pointer :: coord
character (len = *) , intent(IN) :: name
type(ESMF_StaggerLoc) :: location
integer :: units
integer, optional :: rc

A.6.2 ESMFL RegridStore

INTERFACE:

117

subroutine ESMFL_RegridStore (srcFLD, SRCgrid2D, dstFLD, DSTgrid2D, &
vm, rh, rc)

USES:

ARGUMENTS:

type(ESMF_Field), intent(inout) :: srcFLD
type(ESMF_Field), intent(inout) :: dstFLD
type(ESMF_Grid), intent(out) :: SRCgrid2D
type(ESMF_Grid), intent(out) :: DSTgrid2D
type(ESMF_RouteHandle), intent(inout) :: rh
type(ESMF_VM), intent(in) :: vm ! should be intent IN
integer, optional, intent(OUT) :: rc

DESCRIPTION:

Given a srcFLD and its associated 3dGrid and a dstFLD and its associated 3DGrid create
their corresponding 2DGrids and a 2D routehandle.

A.6.3 FieldRegrid1

INTERFACE:

subroutine FieldRegrid1 (srcFLD, Sgrid2D, dstFLD, Dgrid2D, &
vm, rh, fname, rc)

USES:

ARGUMENTS:

118

type(ESMF_Field), intent(in) :: srcFLD
type(ESMF_Field), intent(inout) :: dstFLD
type(ESMF_Grid), intent(in) :: Sgrid2D
type(ESMF_Grid), intent(in) :: Dgrid2D
type(ESMF_RouteHandle), intent(inout) :: rh
type(ESMF_VM), intent(inout) :: vm
! assumes name of src and dst are the same!!
character(len = *), intent(in) :: fname
integer, optional, intent(out) :: rc

DESCRIPTION:

Regrid 3D fields using ESMF FieldRegrid

A.6.4 BundleRegrid1

INTERFACE:

subroutine BundleRegrid1 (srcBUN, Sgrid2D, dstBUN, Dgrid2D, &
vm, rh, rc)

USES:

ARGUMENTS:

type(ESMF_FieldBundle), intent(inOUT) :: srcBUN
type(ESMF_FieldBundle), intent(inout) :: dstBUN
type(ESMF_Grid), intent(in) :: Sgrid2D
type(ESMF_Grid), intent(in) :: Dgrid2D
type(ESMF_RouteHandle), intent(inout) :: rh
type(ESMF_VM), intent(inout) :: vm
integer, optional, intent(out) :: rc

DESCRIPTION:

119

ESMF Regrid a bundle

A.6.5 BundleRegrid

INTERFACE:

subroutine BundleRegrid (srcBUN, dstBUN, rc)

USES:

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: srcBUN ! source bundle
type(ESMF_FieldBundle), intent(inout) :: dstBUN ! destination bundle
integer, optional, intent(out) :: rc ! return code

DESCRIPTION:

Regrid a source bundle (srcBUN) into a destination bundle (dstBUN) using hinterp. A
bundle is thought of as being comprised of n 2D slices (nslices) distributed among the n
PEs (ns per pe). The limits among each ns per pe region are given by n1 and n2 which are
functions of mype (the local PE):

slice_pe
1 --- n1(pe = 0) - --> 0
2 --- | --> 0

. |_ ns_per_pe(pe = 0) .

. | 0

. | 0
--- n2(pe = 0) - 0
--- n1(pe = 1) 1
. .
. .
. .
--- n2(pe = 1) 1

120

--- n1(pe = 2) 2
. .
. .
. .

ns --- slice_pe(ns)
. .
. .
. .

nslices --- n2(pe = n) --> npe

Each slice is gathered, regridded (hinterp), and scattered on a PE determined by a slice-to-
PE map (slice pe) to ”load balance” the work of the serial hinterp function.

A.6.6 Bundle Prep

INTERFACE:

subroutine Bundle_Prep_ (srcBUN, dstBUN, only_vars)

USES:

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: srcBUN !ALT: intent(in)
type(ESMF_FieldBundle), intent(inout) :: dstBUN
character(len = *), optional, intent(in):: only_vars ! comma separated,

! no spaces

DESCRIPTION:

Prepare for regridding

121

A.6.7 assign slices

INTERFACE:

subroutine assign_slices_ (nslices, mype, npe, slice_pe, nfirst, nlast)

USES:

ARGUMENTS:

integer, intent(in) :: nslices ! number of slices
integer, intent(in) :: mype ! local PE
integer, intent(in) :: npe ! number of PEs
integer, intent(inout) :: slice_pe(:) ! slice-to-pe map
integer, intent(out) :: nfirst
integer, intent(out) :: nlast

DESCRIPTION:

Determine number of bundle slices per PE and ”load balanced” map of slices-to-pes (slice pe)

A.6.8 Do Gathers

INTERFACE:

subroutine Do_Gathers_ (BUN, BUF)

USES:

ARGUMENTS:

122

type(ESMF_FieldBundle), intent(inout) :: BUN
real(4), intent(inout), dimension(:,:,:) :: BUF

DESCRIPTION:

gather FLDs in a BUNdle on all PEs into a BUFfer Note: local adressing is used

A.6.9 Do Regrid

INTERFACE:

subroutine Do_Regrid_ (n, inBuf, outBuf)

USES:

ARGUMENTS:

integer, intent(in) :: n ! slice index
real(4), intent(inout), dimension(:,:) :: inBuf ! source buffer
real(4), intent(inout), dimension(:,:) :: outBuf ! destination buffer

DESCRIPTION:

Call hinterp on local PE

A.6.10 Do Scatters

INTERFACE:

subroutine Do_Scatters_ (BUN, BUF)

123

USES:

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: BUN
real(4), intent(inout), dimension(:,:,:) :: BUF

DESCRIPTION:

scatter from BUffer onto FLDs in a BUNdle Note: local adressing is used

A.6.11 StateRegrid

INTERFACE:

subroutine StateRegrid (srcSTA, dstSTA, rc)

USES:

ARGUMENTS:

type(ESMF_State), intent(inout) :: srcSTA
type(ESMF_State), intent(inout) :: dstSTA
integer, optional, intent(out) :: rc ! return code

DESCRIPTION:

Regrid a state

124

A.6.12 ESMFL FieldGetDims

INTERFACE:

subroutine ESMFL_FieldGetDims(FLD, gCPD, lCPD, lm, ar)

USES:

ARGUMENTS:

type(ESMF_Field), intent(inout) :: FLD !ALT: intent(in)
integer, optional, intent(out) :: gCPD(3)
integer, optional, intent(out) :: lCPD(3)
integer, optional, intent(out) :: lm
integer, optional, intent(out) :: ar

DESCRIPTION:

Return some grid information associated from an ESMF field

A.6.13 BundleDiff

INTERFACE:

subroutine BundleDiff (srcBUN, dstBUN, rc)

USES:

ARGUMENTS:

125

type(ESMF_FieldBundle), intent(inout) :: srcBUN
type(ESMF_FieldBundle), intent(inout) :: dstBUN
integer, optional, intent(out) :: rc ! return code

DESCRIPTION:

diff two bundles

A.6.14 StateDiff

INTERFACE:

subroutine StateDiff (srcSTA, dstSTA, rc)

USES:

ARGUMENTS:

type(ESMF_State), intent(inout) :: srcSTA
type(ESMF_State), intent(inout) :: dstSTA
integer, optional, intent(out) :: rc ! return code

DESCRIPTION:

Regrid a state

A.6.15 ESMFL GridDistBlockSet

INTERFACE:

126

subroutine ESMFL_GridDistBlockSet (Egrid, ist, jst, il, jl, &
rlons, rlats, rc)

USES:

ARGUMENTS:

type(ESMF_Grid), intent(inout) :: Egrid
integer, intent(in), dimension(:):: ist, jst, il, jl
real(8), optional, dimension(:) :: rlats
real(8), optional, dimension(:) :: rlons
integer, optional, intent(out) :: rc ! return code

DESCRIPTION:

A.7 Module MAPL HistoryGridCompMod

USES:

use ESMF
use ESMFL_Mod
use MAPL_BaseMod
use MAPL_VarSpecMod
use MAPL_ConstantsMod
use MAPL_IOMod
use MAPL_CommsMod
use MAPL_GenericMod
use MAPL_LocStreamMod
use MAPL_CFIOMod
use MAPL_GenericCplCompMod
use MAPL_NewArthParserMod
use MAPL_SortMod
use ESMF_CFIOMOD, only: StrTemplate = > ESMF_CFIOstrTemplate
use m_chars, only: uppercase

127

use MAPL_CFIOServerMod
!use ESMF_CFIOMOD

PUBLIC MEMBER FUNCTIONS:

public SetServices

DESCRIPTION:

MAPL HistoryGridCompMod is an internal MAPL gridded component used to manange out-
put streams from a MAPL hierarchy. It write Fields in the Export states of all MAPL
components in a hierarchy to file collections during the course of a run. It also has the some
limited capability to interpolate the fields horizontally and/or vertically beofore outputing
them.

It is usually one of the two gridded components in the “cap” or main program of a MAPL
application, the other being the root of the MAPL hierarchy it is servicing. It is instanciated
and all its registered methods are run automatically by MAPL Cap, if that is used. If writing
a custom cap, MAPL HistoryGridCompMod’s SetServices can be called anytime after ESMF
is initialized. Its Initialize method should be executed before entering the time loop, and its
Run method at the bottom of each time loop, after advancing the Clock. Finalize simply
cleans-up memory.

The component has no true export state, since its products are diagnostic file collections.
It does have both Import and Internal states, which can be treated as in any other MAPL
component, but it generally makes no sense to checkpoint and restart these.

The behavior of MAPL HistoryGridCompMod is controlled through its configuration, which
as in any MAPL gridded component, is open and available in the GC. It is placed there by
the cap and usually contained in a HISTORY.rc file.

MAPL HistoryGridCompMod uses MAPL CFIO for creating and writing its files; it thus obeys all
MAPL CFIO rules. In particular, an application can write either Grads style flat files together
with the Grads .ctl file description files, or one of two self-describing format (netcdf or HDF),
which ever is linked with the application.

Each collection to be produced is described in the HISTORY.rc file and can have the
following properties:

• Its fields may be ”instantaneous” or ”time-averaged”, but all fields within a collection
use the same time discretization.

128

• A beginning and an end time may be specified for each collection .

• Collections are a set of files with a common name template.

• Files in a collection have a fixed number of time groups in them.

• Data in each time group are ”time-stamped”; for time-averaged data, the center of
the averaging period is used.

• Files in a collection can have time-templated names. The template values correspond
to the times on the first group in the file.

The body of the HISTORY.rc file usually begins with two character string attributes under
the config labels EXPID: and EXPDSC: that are identifiers for the full set of collections. These
are followed by a list of collection names under the config label COLLECTIONS:. Note the
conventional use of colons to terminate labels in the HISTORY.rc.

The remainder of the file contains the attributes for each collection. Attribute labels consist
of the attribute name with the collection name prepended; the two are separated by a ’.’.

Attributes are listed below. A special attribute is collection.fields: which is the label
for the list of fields that will be in the collection. Each item (line) in the field list consists
of a comma separated list with the field’s name (as it appears in the corresponding ESMF
field in the EXPORT of the component), the name of the component that produces it, and
the alias to use for it in the file. The alias may be omitted, in which case it defaults to the
true name.

Files in a collection are named using the collection name, the template attribute described
below, and the EXDID: attribute value. A filename extension may also be added to identify
the type of file (e.g., .nc4).

[expid.]collection[.template][.ext]

The extension is not added automatically, it is up to the user to add the appropriate one.
If the format is CFIO or CFIOasync and the extension is absent or .nc a NETCDF4 classic
file will be produced. Is the extentions is .nc4 a NETCDF4 file will be produced. If it is
”flat”, the data files have whatever extension you provide and the “control file” has the .ctl
extension, but with no template. The expid is always prepended, unless it is an empty
string.

The following are the valid collection attributes:

template Character string defining the time stamping template that is appended
to collection to create a particular file name. The template uses GrADS
convensions. The default value depends on the duration of the file.

129

descr Character string describing the collection. Defaults to ”expdsc”.

format Character string to select file format (”CFIO”, ”CFIOasync”, ”flat”).
”CFIO” uses MAPL CFIO and produces netcdf output. ”CFIOasync” uses
MAPL CFIO but delegates the actual I/O to the MAPL CFIOServer (see MAPL CFIOServer
documenation for details). Default = ”flat”.

frequency Integer (HHHHMMSS) for the frequency of time groups in the col-
lection. Default = 060000.

mode Character string equal to ”instantaneous” or ”time-averaged”. Default =
”instantaneous”.

acc interval Integer (HHHHMMSS) for the acculation interval (¡= frequency)
for time-averaged diagnostics.Default = frequency; ignored if mode is ”instan-
taneous”.

ref date Integer (YYYYMMDD) reference date for frquency; also the beginning
date for the collection. Default is the Start date on the Clock.

ref time Integer (HHMMSS) Same a ref date.

end date Integer (YYYYMMDD) ending date to stop diagnostic output. De-
fault: no end

end time Integer (HHMMSS) ending time to stop diagnostic output. Default:
no end.

duration Integer (HHHHMMSS) for the duration of each file. Default = 00000000
(everything in one file).

resolution Optional resolution (IM JM) for the ouput stream. Transforms be-
twee two regulate LogRect grid in index space. Default is the native resolution.

xyoffset Optional Flag for output grid offset when interpolating. Must be be-
tween 0 and 3. (Cryptic Meaning: 0:DcPc, 1:DePc, 2:DcPe, 3:DePe). Ignored
when resolution results in no interpolation (native). Default: 0 (DatelinCen-
terPoleCenter).

levels Optional list of output levels (Default is all levels on Native Grid). If
vvars is not specified, these are layer indeces. Otherwise see vvars, vunits,
vscale.

vvars Optional field to use as the vertical coordinate and functional form of
vertical interpolation. A second argument specifies the component the field
comes from. Example 1: the entry ’log(PLE)’,’DYN’ uses PLE from the DYN
component as the vertical coordinate and interpolates to levels linearly in its
log. Example 2: ’THETA’,’DYN’ a way of producing isentropic output. Only
log(·), pow(·,real number) and straight linear interpolation are supported.

130

vunit Character string to use for units attribute of the vertical coordinate in
file. The default is the MAPL CFIO default. This affects only the name in the
file. It does not do the conversion. See vscale

vscale Optional Scaling to convert VVARS units to VUNIT units. Default: no
conversion.

regrid exch Name of the exchange grid that can be used for interpolation be-
tween two LogRect grids or from a tile grid to a LogRect grid. Default: no
exchange grid interpolation. irregular grid.

regrid name Name of the Log-Rect grid to interpolate to when going from a tile
to Field to a gridde output. regrid exch must be set, otherwise it is ignored.

conservative Set to a non-zero integer to turn on conservative regridding when
going from a native cube-sphere grid to lat-lon output. Default: 0

deflate Set deflate level (0-9) of NETCDF output when format is CFIO or
CFIOasync. Default: 0

subset Optional subset (lonMin lonMax latMin latMax) for the output when
performing non-conservative cube-sphere to lat-lon regridding of the output.

chunksize Optional user specified chunking of NETCDF output when format
is CFIO or CFIOasync, (Lon chunksize, Lat chunksize, Lev chunksize, Time
chunksize)

The following is a sample HISORY.rc take from the FV HeldSuarez test.

EXPID: fvhs_example
EXPDSC: fvhs_(ESMF07_EXAMPLE)_5x4_Deg

COLLECTIONS:
’dynamics_vars_eta’
’dynamics_vars_p’
::

dynamics_vars_eta.template: ’%y4%m2%d2_%h2%n2z’,
dynamics_vars_eta.format: ’CFIO’,
dynamics_vars_eta.frequency: 240000,
dynamics_vars_eta.duration: 240000,
dynamics_vars_eta.fields: ’T_EQ’ , ’HSPHYSICS’ ,

’U’ , ’FVDYNAMICS’ ,
’V’ , ’FVDYNAMICS’ ,
’T’ , ’FVDYNAMICS’ ,
’PLE’ , ’FVDYNAMICS’ ,

::

131

dynamics_vars_p.template: ’%y4%m2%d2_%h2%n2z’,
dynamics_vars_p.format: ’flat’,
dynamics_vars_p.frequency: 240000,
dynamics_vars_p.duration: 240000,
dynamics_vars_p.vscale: 100.0,
dynamics_vars_p.vunit: ’hPa’,
dynamics_vars_p.vvars: ’log(PLE)’ , ’FVDYNAMICS’ ,
dynamics_vars_p.levels: 1000 900 850 750 500 300 250 150 1,
dynamics_vars_p.fields: ’T_EQ’ , ’HSPHYSICS’ ,

’U’ , ’FVDYNAMICS’ ,
’V’ , ’FVDYNAMICS’ ,
’T’ , ’FVDYNAMICS’ ,
’PLE’ , ’FVDYNAMICS’ ,

::

BUGS:

1. It may not be well behaved if more than one instance exists in an application.

2. Its use for servicing a non-MAPL gridded components is not documented.

3. GrADS output is currently done through specialized calls, rather than through the
CFIO library.

4. Horizontal and vertical interpolation correctly rely on CFIO, and so are not yet avail-
able for GrADS files.

5. If resolution attribute is used to INCREASE resolution, code may break.

6. Grid offsetting is very limited and does not allow for arbitrary rotations in longitude

7. Currently, this component only handles MAPL supported grids, which currently are
the regular lat-lon and the cubed-sphere ESMF grids that tile the entire sphere.

A.8 Module MAPL GenericCplCompMod

DESCRIPTION:

This is a generic coupler component used by Mapl to instantiate the automatic couplers it
needs.
INTERFACE:

132

module MAPL_GenericCplCompMod

USES:

use ESMF
use ESMFL_Mod
use MAPL_BaseMod
use MAPL_ConstantsMod
use MAPL_IOMod
use MAPL_ProfMod
use MAPL_SunMod
use MAPL_VarSpecMod

PUBLIC MEMBER FUNCTIONS:

public GenericCplSetServices
public MAPL_CplCompSetVarSpecs

A.8.1 GenericCplSetServices

DESCRIPTION:

SetServices for generic couplers. INTERFACE:

subroutine GenericCplSetServices (CC, RC)

ARGUMENTS:

type (ESMF_CplComp), intent(INOUT) :: CC
integer, intent(OUT) :: RC

133

A.8.2 INITIALIZE

DESCRIPTION:

Initialize method for generic couplers. INTERFACE:

subroutine Initialize(CC, SRC, DST, CLOCK, RC)

ARGUMENTS:

type (ESMF_CplComp) :: CC
type (ESMF_State) :: SRC
type (ESMF_State) :: DST
type (ESMF_Clock) :: CLOCK
integer, intent(OUT) :: RC

A.8.3 RUN

DESCRIPTION:

Run method for the generic coupler. INTERFACE:

subroutine Run(CC, SRC, DST, CLOCK, RC)

ARGUMENTS:

type (ESMF_CplComp) :: CC
type (ESMF_State) :: SRC
type (ESMF_State) :: DST
type (ESMF_Clock) :: CLOCK
integer, intent(OUT) :: RC

134

A.8.4 FINALIZE

DESCRIPTION:

Finalize method for the generic coupler. INTERFACE:

subroutine Finalize(CC, SRC, DST, CLOCK, RC)

ARGUMENTS:

type (ESMF_CplComp) :: CC
type (ESMF_State) :: SRC
type (ESMF_State) :: DST
type (ESMF_Clock) :: CLOCK
integer, intent(OUT) :: RC

A.9 Module MAPL ExtDataGridCompMod - Implements In-
terface to External Data

DESCRIPTION:

MAPL ExtDataGridComp is an ESMF gridded component implementing an interface to bound-
ary conditions and other types of external data files.

Developed for GEOS-5 release Fortuna 2.0 and later. USES:

USE ESMF
use MAPL_BaseMod
use MAPL_CommsMod
use ESMFL_Mod
use MAPL_GenericMod
use MAPL_VarSpecMod
use ESMF_CFIOFileMod
use ESMF_CFIOMod
use ESMF_CFIOUtilMod
use MAPL_CFIOMod

135

use MAPL_NewArthParserMod
use MAPL_ConstantsMod, only: MAPL_PI

IMPLICIT NONE
PRIVATE

PUBLIC MEMBER FUNCTIONS:

PUBLIC SetServices

A.9.1 SetServices — Sets IRF services for the MAPL ExtData

INTERFACE:

SUBROUTINE SetServices (GC, RC)

ARGUMENTS:

type(ESMF_GridComp), intent(INOUT) :: GC ! gridded component
integer, optional :: RC ! return code

DESCRIPTION:

Sets Initialize, Run and Finalize services. REVISION HISTORY:

12Dec2009 da Silva Design and first implementation.

A.9.2 Initialize — Initialize MAPL ExtData

INTERFACE:

SUBROUTINE Initialize_ (GC, IMPORT, EXPORT, CLOCK, rc)

136

USES:

INPUT PARAMETERS:

type(ESMF_Clock), intent(inout) :: CLOCK ! The clock

OUTPUT PARAMETERS:

type(ESMF_GridComp), intent(inout) :: GC ! Grid Component
type(ESMF_State), intent(inout) :: IMPORT ! Import State
type(ESMF_State), intent(inout) :: EXPORT ! Export State
integer, intent(out) :: rc ! Error return code:

! 0 - all is well
! 1 -

DESCRIPTION:

This is a simple ESMF wrapper. REVISION HISTORY:

12Dec2009 da Silva Design and first implementation.

A.9.3 Run — Runs MAPL ExtData

INTERFACE:

SUBROUTINE Run_ (GC, IMPORT, EXPORT, CLOCK, rc)

USES:

INPUT PARAMETERS:

137

type(ESMF_Clock), intent(inout) :: CLOCK ! The clock

OUTPUT PARAMETERS:

type(ESMF_GridComp), intent(inout) :: GC ! Grid Component
type(ESMF_State), intent(inout) :: IMPORT ! Import State
type(ESMF_State), intent(inout) :: EXPORT ! Export State
integer, intent(out) :: rc ! Error return code:

! 0 - all is well
! 1 -

DESCRIPTION:

This is a simple ESMF wrapper. REVISION HISTORY:

12Dec2009 da Silva Design and first implementation.

A.9.4 Finalize — Finalize MAPL ExtData

INTERFACE:

SUBROUTINE Finalize_ (GC, IMPORT, EXPORT, CLOCK, rc)

USES:

INPUT PARAMETERS:

type(ESMF_Clock), intent(inout) :: CLOCK ! The clock

OUTPUT PARAMETERS:

138

type(ESMF_GridComp), intent(inout) :: GC ! Grid Component
type(ESMF_State), intent(inout) :: IMPORT ! Import State
type(ESMF_State), intent(inout) :: EXPORT ! Export State
integer, intent(out) :: rc ! Error return code:

! 0 - all is well
! 1 -

DESCRIPTION:

This is a simple ESMF wrapper. REVISION HISTORY:

12Dec2009 da Silva Design and first implementation.

Bibliography

[1] DeLuca, C. and the ESMF Joint Specification Team. Earth System Modeling Frame-
work Project Plan 2005-2010, http://www.esmf.ucar.edu (is the website correct!?!?!)

[2] ESMF Joint Specification Team. ESMF Reference Manual for Fortran, Version 5.3
http://www.earthsystemmodeling.org

[3] Hill, C., C. DeLuca, V. Balaji, M. Suarez, A. da Silva. The Architecture of the Earth
System Modeling Framework. Computing in Science and Engineering, Vol. 11, No. 6,
January/February 2004, pp. 18-28.

[4] Held, I.M. and M.J. Suarez. A proposal for the intercomparison of the dynamical cores
of atmospheric general circulation models. Bulletin of the American Meteorological
Society, 75(10), 1825-1830, 1994.

[5] Williamson, D.L., J.G. Olson, B.A. Boville. A comparison of semi-Lagrangian and
Eulerian tropical climate simulations. Mon. Wea. Rev., 126, 1001-1012, 1998.

139

http://www.earthsystemmodeling.org

Index

assign slices , 121

Bundle Prep , 120
BundleDiff, 124
BundleRegrid, 119
BundleRegrid1, 118

Do Gathers , 121
Do Regrid , 122
Do Scatters , 122

ESMFL FieldGetDims, 124
ESMFL GridCoordGet, 116
ESMFL GridDistBlockSet, 125
ESMFL RegridStore, 116

FieldRegrid1, 117
FINALIZE, 134
Finalize , 137

GenericCplSetServices, 132

INITIALIZE, 133
Initialize , 135

MAPL AddChild, 71
MAPL AddConnectivity, 72
MAPL AddInternalSpec, 64
MAPL Cap, 53
MAPL CFIOClose, 101
MAPL CFIOCreate, 86
MAPL CFIODestroy, 101
MAPL CFIORead, 92
MAPL CFIOWrite, 89, 90
MAPL DoNotDeferExport, 66
MAPL GenericFinalize, 61
MAPL GenericInitialize, 60
MAPL GenericRun, 60
MAPL GenericRunCouplers, 70

MAPL GenericSetServices, 59
MAPL Get, 67
MAPL GetHorzIJIndex, 114
MAPL GetObjectFromGC, 67
MAPL GetResource, 77
MAPL GridCompSetEntryPoint, 66
MAPL LatLonGridCreate, 110
MAPL LocStreamCreate, 103
MAPL LocStreamTransform, 104
MAPL ReadForcing, 80
MAPL Set, 69
MAPL StateAddExportSpec, 63
MAPL StateAddImportSpec, 61
MAPL StatePrintSpecCSV, 71
MAPL TerminateImport, 74
MAPL TimerAdd, 76
MAPL TimerOff, 76
MAPL TimerOn, 75

RUN, 133
Run , 136

SetServices, 135
StateDiff, 125
StateRegrid, 123

140

141

This page is intentionally left blank.

	Introduction
	ESMF - A review of aspects relevant to MAPL
	MAPL
	Overview
	Building a Mapl Gridded Component: Mapl_Core
	Building complex applications: Mapl_Connect
	Doing Diagnostics: Mapl_History
	Doing Diagnostics Asynchronously: Mapl_CFIOServer
	Connecting Import Fields to Data on File: Mapl_ExtData
	Performing Arithemtic Operations on Fields: Mapl_NewArthParser
	Doing I/O: Mapl_CFIO
	Miscellaneous Features: Mapl_Utils
	A complete MAPL example - Held-Suarez benchmark for FVdycore

	MAPL Application Programming Interface (API)
	MAPL_CapMod --- Implements the top entry point for MAPL components
	MAPL_GenericMod
	MAPL_CFIO --- CF Compliant I/O for ESMF
	MAPL_LocStreamMod -- Manipulate location streams
	MAPL_BaseMod --- A Collection of Assorted MAPL Utilities
	ESMFL_MOD
	MAPL_HistoryGridCompMod
	MAPL_GenericCplCompMod
	MAPL_ExtDataGridCompMod - Implements Interface to External Data

	Bibliography
	Index: Alphabetical list of subroutines/functions

