
ProTEX guidelines

Purnendu Chakraborty

January 2, 2013

Contents

1 Introduction 2

2 Prologue 2

3 Contained method 3

4 Overloaded routines 4

5 Spec calls for Import/Export/Internal states 5

6 Resources 6

7 Code 6

1

2

1 Introduction

This doc is a general guideline to document F90 source files (with ProTEX tags). For ques-
tions, contact: purnendu.chakraborty@nasa.gov.

Note:

• Many of the source lines are reproduced verbatim by ProTEX. So it is best, if we stick
to the 80-column rule (including comments).

• A method can refer to both a subroutine or a function.

In a module/main program, we want to document the following:

1. a description of the module

2. USES (e.g. use ESMF Mod)

3. list of PUBLIC TYPES

4. list PUBLIC MEMBER FUNCTIONS (subroutines/functions)

5. interface, arguments and description of each public method

In the following sections we use an example to illustrate uses of the ProTEX tags.

2 Prologue

Documentation starts right after the module name (line 4) with the !BOP (begin-of-prologue)
tag (line 5), followed by the module name and a brief description of the module (line 6 -
note the two !’s with a space between them). This is the name that ProTEX reads and
prints out.

1 #include "MAPL_Generic.h"
2 #define MPI_NULL_TAG 99
3
4 module MAPL_CFIOMod
5 !BOP
6 ! !MODULE: MAPL_CFIOMod --- CF Compliant I/O for ESMF

Next is a detailed description of the module following the tag !DESCRIPTION. We can either
write the description in the code itself (as is the case here) or include a TEX file (without
preamble) as

\input{filedesc.tex}

In the case of include-ing a file, the file should be added/committed to CVS. Also note that
the comment character ‘!’ for the text following !DESCRIPTION should always be in column
1 (line 8). This is probably a quirk of ProTEX - and I hope to fix it sometime.

3

7 !DESCRIPTION:
8 ! Description of what this module does.
9 ! blah blah etc. The comment character ’!’

10 ! should always be in column 1.

The tag !USES is followed by all modules loaded and used.

11 !USES:
12 use ESMF_Mod
13 use MAPL_BaseMod
14
15 implicit none

The public methods are listed next followed by the end of prologue tag (!EOP).

16 private
17
18 !PUBLIC MEMBER FUNCTIONS:
19 public MAPL_CFIOclose
20 public MAPL_CFIOCreate
21 public MAPL_CFIOWrite
22 !EOP
23
24 contains

3 Contained method

Documentation (!IROUTINE, !INTERFACE, !ARGUMENTS and !DESCRIPTION tags) is enclosed
inside a !BOPI/!EOPI (begin/end of prologue - internal) block. Documentation starts with
the routine name and a brief description (line 26 - note the two ‘!’ separated by a space).
!INTERFACE precedes the function/subroutine name and !ARGUMENTS is followed by the list
of in/out/inout arguments in the interface. It is a good practice to include a brief description
of each argument. As before, The text following !DESCRIPTION should have the comment
character in column 1.

25 !BOPI
26 ! !IROUTINE: MAPL_CFIOClose --- Close file in MAPL CFIO Object
27
28 !INTERFACE:
29 subroutine MAPL_CFIOClose(MCFIO, RC)
30
31 !ARGUMENTS:
32 type(MAPL_CFIO), intent(INOUT) :: MCFIO ! brief description
33 integer, optional, intent(OUT) :: RC ! brief description
34
35 !DESCRIPTION:
36 ! Not a full destroy; only closes the file.
37

4

38 !EOPI
39 ... rest of the code
40
41 end subroutine MAPL_CFIOClose

The result is shown in Figure (1).

Figure 1: ProTEX-ed version of MAPL CFIOClose

4 Overloaded routines

ProTEX uses the tags !IROTUINE and !IIROUTINE to document overloaded methods. It
is important to code the individual methods (that are part of the generic interface) con-
secutively. The individual methods are tagged with !IIROUTINE (lines 44, 68) instead of
!IROUTINE), !INERFACE, !ARGUMENTS and !DESCRIPTION. The first of these routine includes
an additional !IROUTINE tag (line 43) that defines the generic interface name. In this exam-
ple, the generic interface is called MAPL CFIOCreate that overloads two individual routines,
the first of which is documented as follows:

42 !BOPI
43 ! !IROUTINE: MAPL_CFIOCreate --- Creates a MAPL CFIO Object
44 ! !IIROUTINE: MAPL_CFIOCreateFromBundle --- Creates MAPL CFIO Object from a Bundle
45
46 !INTERFACE:
47 subroutine MAPL_CFIOCreateFromBundle(MCFIO, NAME, CLOCK, BUNDLE, &
48 OFFSET, RESOLUTION, FREQUENCY, &
49 LEVELS, DESCR, XYOFFSET, VCOORD, &
50 VUNIT, VSCALE, SOURCE, INSTITUTION, &
51 COMMENT, CONTACT, FORMAT, EXPID, &
52 DEFLATE, GC, ORDER, NumCores, nbits, &
53 RC)
54
55 !ARGUMENTS:

5

56 type(MAPL_CFIO), intent(OUT) :: MCFIO ! brief description
57 character(LEN=*), intent(IN) :: NAME ! brief description
58 ... more arguments
59
60 !DESCRIPTION:
61 ! Description of this routine and arguments in more detail
62
63 !EOPI
64 ... rest of the code
65
66 end subroutine MAPL_CFIOCreateBundle

The second routine is documented as

67 !BOPI
68 ! !IIROUTINE: MAPL_CFIOCreateFromState --- Creates MAPL CFIO Object from a State
69
70 !INTERFACE:
71 subroutine MAPL_CFIOCreateFromState (MCFIO, NAME, CLOCK, STATE, OFFSET, &
72 RESOLUTION, LEVELS, DESCR, BUNDLE, &
73 XYOFFSET, VCOORD, VUNIT, VSCALE, &
74 SOURCE, INSTITUTION, COMMENT, &
75 CONTACT, FORMAT, EXPID, DEFLATE, GC, &
76 ORDER, NumCores, nbits, &
77 RC)
78
79 !ARGUMENTS:
80 type(MAPL_CFIO), intent(OUT) :: MCFIO ! brief description
81 character(LEN=*), intent(IN) :: NAME ! brief description
82 ... more arguments
83
84 !DESCRIPTION:
85 ! more detailed description
86
87 !EOPI
88 ... rest of the code
89
90 end subroutine MAPL_CFIOCreateFromState

The result is is shown in Figure (2).

5 Spec calls for Import/Export/Internal states

The spec calls for Import/Export/Internal states need to be enclosed between !BOS/!EOS
for documentation. The call to MAPL AddXXXXSpec should have the form

call MAPL_AddExportSpec(GC, &
SHORT_NAME = ’KE’, &

6

LONG_NAME = ’vertically_integrated_kinetic_energy’, &
UNITS = ’J m-2’, &
DIMS = MAPL_DimsHorzOnly, &
VLOCATION = MAPL_VLocationNone, &
RC = STATUS)

Note:

• The state variables are listed in a table (LATEX longtable spanning multiple pages).

• Multiple arguments (e.g. UNITS and DIMS) in a single line would lead to errors.

• UNITS should be LATEX ready.

1. m/s2 is represented as ‘m s-2’. ‘a+2 b-4’ stands for a2b−4.

2. pκ is represented as ‘p$^\kappa$’.

• LONG NAME should be such that after splitting with respect to ‘ ’, it is a valid
LATEX statement and is printed as is. For example, the long name ‘mid layer $p
^\kappa$’ is printed as ‘mid layer pκ’.

6 Resources

To document the resources, calls to MAPL GetResource needs to be enclosed between !BOR/!EOR.
For correct documentation, protex needs two lines: (1) comment line starting with the key-
word !RESOURCE ITEM: followed by the actual call to MAPL GetResource.

!BOR
!RESOURCE_ITEM: K :: Value of isothermal temperature on coldstart
call MAPL_GetResource (MAPL, T0, ’T0:’, default=300., RC=STATUS)
!EOR

From the !RESOURCE ITEM line, protex reads the unit (K) and the description (Value of
isothermal temperature on coldstart). From the call line, protex reads the name (label) and
its default value. The call line should NOT be continued to the next line(s).

7 Code

Any code fragment in addition to the ones already mentioned can be documented (as LATEX
verbatim) using a !BOC/!EOC block.

7

Figure 2: ProTEX-ed version of MAPL CFIOCreate

	Introduction
	Prologue
	Contained method
	Overloaded routines
	Spec calls for Import/Export/Internal states
	Resources
	Code

