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ABSTRACT

The standard model for sea ice dynamics treats the ice pack as a visco–plastic material that flows plastically
under typical stress conditions but behaves as a linear viscous fluid where strain rates are small and the ice
becomes nearly rigid. Because of large viscosities in these regions, implicit numerical methods are necessary
for time steps larger than a few seconds. Current solution methods for these equations use iterative relaxation
methods, which are time consuming, scale poorly with mesh resolution, and are not well adapted to parallel
computation. To remedy this, the authors developed and tested two separate methods. First, by demonstrating
that the viscous–plastic rheology can be represented by a symmetric, negative definite matrix operator, the much
faster and better behaved preconditioned conjugate gradient method was implemented. Second, realizing that
only the response of the ice on timescales associated with wind forcing need be accurately resolved, the model
was modified so that it reduces to the viscous–plastic model at these timescales, whereas at shorter timescales
the adjustment process takes place by a numerically more efficient elastic wave mechanism. This modification
leads to a fully explicit numerical scheme that further improves the model’s computational efficiency and is a
great advantage for implementations on parallel machines.

Furthermore, it is observed that the standard viscous–plastic model has poor dynamic response to forcing on
a daily timescale, given the standard time step (1 day) used by the ice modeling community. In contrast, the
explicit discretization of the elastic wave mechanism allows the elastic–viscous–plastic model to capture the ice
response to variations in the imposed stress more accurately. Thus, the elastic–viscous–plastic model provides
more accurate results for shorter timescales associated with physical forcing, reproduces viscous–plastic model
behavior on longer timescales, and is computationally more efficient overall.

1. Introduction

A model of sea ice dynamics predicts the movement
of the ice pack based on winds, ocean currents, and a
model of the material strength of the ice. Nonuniform
motion of the ice is responsible for the thickness and
extent of the ice pack, which in turn influences the ex-
change of energy between the atmosphere and polar
oceans. The dynamic characteristics of sea ice thereby
play an essential role in climate-related processes of the
ocean and atmosphere.

Many models have been developed to describe the
ice dynamics. Some early studies focused on free drift
descriptions with no ice interaction (Felzenbaum 1961;
Bryan et al. 1975; Manabe et al. 1979; Parkinson and
Washington 1979); others included more complex sea
ice rheologies, treating the ice as a Newtonian viscous
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fluid (Campbell 1965), a linear viscous fluid (Hibler
1974; Hibler and Tucker 1979), or a plastic material.
The Arctic Ice Dynamics Joint Experiment (AIDJEX)
in the 1970s proposed an elastic–plastic rheology for
the sea ice pack (Coon et al. 1974), and several other
nonlinear plastic rheologies have been studied since then
(e.g., Pritchard et al. 1977; Flato and Hibler 1992; Ip
et al. 1991). A nonlinear viscous–plastic (VP) rheology
proposed by Hibler (1979) has become the standard sea
ice dynamics model and the basis for many recent sea
ice studies.

The VP model suffers from numerical difficulties re-
lated to the enormous range of effective viscosities pres-
ent in the model and requires large computational re-
sources that become particularly cumbersome when the
model is coupled to an ocean or atmophere model (Hib-
ler and Bryan 1987; Oberhuber 1993a,b). To avoid the
stringent time step restriction for stability of an explicit
numerical scheme in regions where the ice is relatively
rigid, the model equations are typically solved with im-
plicit methods such as successive overrelaxation (Hibler
1979) and line relaxation (Oberhuber 1993a; Holland et
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al. 1993). However, these methods suffer from poor con-
vergence characteristics as the mesh resolution is in-
creased. Attempts to overcome the inherent problems
of the model have included improved numerical meth-
ods as well as simplifications of the model itself. As
part of this paper, we present a more efficient implicit
numerical method for solving the VP model equations
that uses preconditioned conjugate gradients.

Simpler versions of the VP model, such as free drift
descriptions with no ice interaction and cavitating fluid
models in which the ice has no resistance to shear forces
(Nikiforov et al. 1967; Flato and Hibler 1989, 1992),
are more tractable numerically, but the model behavior
is sensitive to these simplifications (Holland et al. 1993).
Likewise, simulations with more complicated rheologies
than the standard elliptical yield curve (Hibler 1979),
such as teardrop (Coon et al. 1974), sine wave lens
(Bratchie 1984), Mohr–Coulomb, and square (Ip et al.
1991) shapes, show that the rheology can have a sig-
nificant effect on long-term simulations of ice drift (Ip
et al. 1991). Since an ice model need only simulate a
visco–plastic material at timescales on the order of those
imposed by wind forcing (days), we also present a mod-
ification of the model, the addition of elastic behavior,
that realizes significant gains in numerical efficiency,
reduces to the original VP model behavior at long time-
scales, and is more accurate for transients. Our model
avoids the complexities of the early elastic–plastic mod-
els (Pritchard 1975; Colony and Pritchard 1975) because
the elastic-like behavior is not intended to be physically
realistic and is introduced for numerical expediency.

The VP model also suffers from inaccuracies in cal-
culating transient behavior. For example, given daily
time steps, the VP model behavior is acceptable only
for surface stresses that vary on the order of a week or
more. Hibler (1979) states that several time steps are
needed between changes in the forcing (he uses 8-day
averaged winds with a 1-day time step), and more re-
cently, Stössel et al. (1994) have noted that the sea ice
components of some ice–ocean coupled models are slow
to converge, especially under daily forcing. The VP nu-
merical model does produce correct transient behavior
if the time step is taken sufficiently small, on the order
of minutes for 1-day forcing timescales. Our imple-
mentation of the elastic–viscous–plastic (EVP) model
is more accurate in resolving transients, even using rel-
atively large time steps, and therefore will produce more
accurate ice behavior.

The VP ice dynamics model is not well suited to
parallel architectures. Implicit methods required for
larger time steps typically entail a great deal of com-
munication between processors, making parallel com-
putation less attractive. Therefore, explicit models are
generally preferable for parallel implementations. Ip et
al. (1991) optimized the VP model for multiprocessor
computers using an explicit, Euler time-stepping
scheme, but stability requirements of the numerical
method severely limited the time step. The new EVP

model presented in this paper permits a fully explicit
implementation with an acceptably long time step. Its
efficiency is compared with three methods of solving
the viscous–plastic equations: the preconditioned con-
jugate gradient method and two relaxation schemes
(Hibler 1979; Zhang and Hibler 1996).

The present work is part of an effort to develop a
computationally efficient sea ice component for a fully
coupled atmosphere–ice–ocean global climate model.
The sea ice model, which also includes thermodynamic
and transport components, is designed to be compatible
with the Parallel Ocean Program (POP), an ocean cir-
culation model developed at Los Alamos National Lab-
oratory for use on massively parallel computers (Smith
et al. 1992; Dukowicz et al. 1993, 1994).

2. The ice dynamics model

a. Viscous–plastic model equations

Pack ice typically consists of rigid plates, which may
drift freely in areas of relatively open water or be closely
packed together in regions of high ice concentration.
Although individual ice floes range from tens of meters
to several kilometers across, the ice pack is considered
to be a highly fractured two-dimensional continuum, to
make modeling it tractable (Pritchard 1975; Rothrock
1975b; Hibler 1980; Gray and Morland 1994).

The force balance per unit area in the ice pack is
given by a two-dimensional momentum equation (Hib-
ler 1979), obtained by integrating the 3D equation
through the thickness of the ice in the vertical direction:

]u ]s ]Hi ij om 5 1 t 1 t 1 « m fu 2 mg , (1)ai wi ij3 j]t ]x ]xj i

where ta 5 (tai, taj) and tw 5 (twi, twj) are wind and
ocean stresses, respectively, assumed to be of the form

t 5 c r zU z(U cosf 1 k 3 U sinf),a a a a a a

t 5 c r zU 2 uz[(U 2 u)cosuw w w w w

1 k 3 (U 2 u)sinu]. (2)w

The strength of the ice is represented by the internal
stress tensor sij. Definitions of the other variables and
constants are given in Tables 1 and 2.

There has been a great deal of disagreement about
the relative importance of the various terms in (1) (Par-
kinson and Washington 1979). The primary components
are the air and water stresses, Coriolis force, and ice
interaction effects (Hibler 1986); the most predominant
of these is wind stress (Coon 1980). Rothrock (1975a)
demonstrated through scale analyses that the accelera-
tion term is three orders of magnitude smaller than the
stress terms. In contrast to Hibler (1979) and following
Oberhuber (1993a), we neglect nonlinear advection,
which is at least an order of magnitude smaller than the
acceleration term. The ice interaction term is essential
in balancing the stresses in much of the ice field (Hibler
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TABLE 1. Constants and parameters used in the dynamics
equations.

c*
ca

cw

dij

«ijk

e
g
Ho

k̂
P*
ra

ri

rs

rw

u
f

air drag coefficient
ocean drag coefficient
Kronecker deltaa

alternating tensorb

yield curve axis ratio
gravitational acceleration
sea surface height
vertical unit vector

air density
sea ice density
snow density
seawater density
water turning angle
air turning angle

20

0.0055

2

2.75 3 105 dyn cm22

0.91 g cm23

0.33 g cm23

1.03 g cm23

258

adij 5 1 if i 5 j and 0 if i ± j.
b«ijk 5 0 if any two indices are the same, 1 if the indices are in

cyclical order, and 21 otherwise.

TABLE 2. Definitions of other symbols used in the dynamics
equations, and their interdependencies.

Variable quantities Interdependence

c
E
ėij

f
h
hs

H
Hs

m
P
h
z
sij

ta

tw

u
Ua

Uw

compactness
Young’s modulus
strain rate tensor
Coriolis parameter
thickness of thin ice
snow depth on thin ice
thickness of thick ice
snow depth on thick ice
mass per unit area
pressure
shear viscosity
bulk viscosity
stress tensor
wind stress
ocean stress
ice velocity
geostrophic wind
geostrophic ocean current

u
c, H
u

u
u
u
u
c, H, Hs, h, hs

c, H
P, ėij

P, ėij

h, z, P, ėij

u
sij, tw, m

1979; Parkinson and Washington 1979; Coon 1980;
Hibler 1986), and although they are smaller in magni-
tude, current and tilt effects are significant over long
periods of time (Hibler 1986; Warn-Varnas et al. 1991).

The momentum equation must be consistent for any
combination of ice and open water in a grid cell. Our
particular model differentiates between thick and thin
ice and tracks ice concentration with compactness, c,
the fractional area of the cell covered with thick ice.
When c 5 0, there is no thick ice (H 5 0), and there
may be either thin ice (h . 0) or open water (h 5 0).
The mass m in (1) is the total mass of ice and snow per
unit area, corresponding to r dz:H∫0

m 5 r [cH 1 (1 2 c)h] 1 r [cH 1 (1 2 c)h ]. (3)i s s s

Thin ice is assumed to have no strength, so that the
internal stress tensor is nonzero only for thick ice. Since
the surface stress terms tai and twi apply over the entire
area, we see that thin ice in a cell that does not contain
thick ice essentially exists in free drift, given by the
momentum equation without ice interaction. In the spe-
cial case when there is only open water, m 5 0 and the
‘‘ice’’ velocity is that of the interface between atmo-
sphere and ocean, calculated with ta 1 tw 5 0.

The viscous–plastic rheology proposed by Hibler
(1979) is given by a constitutive law that relates the
internal ice stress sij and the rates of strain throughėij

an internal ice pressure P and nonlinear bulk and shear
viscosities, z and h, such that the principal components
of stress lie on an elliptical yield curve with the ratio
of major to minor axes e equal to 2. The constitutive
law is given by

s 5 2hė 1 (z 2 h)ė d 2 Pd /2, (4)ij ij kk ij ij

where

1 ]u ]ui jė 5 1 . (5)ij 1 22 ]x ]xj i

Alternatively, this can be rewritten in the form

1 h 2 z P
s 1 s d 1 d 5 ė , (6)ij kk ij ij ij2h 4hz 4z

which will be useful to us later. This rheology allows
the ice pack to diverge with little or no stress, yet resist
compression and shearing motion under convergent
conditions.

The pressure P, a measure of ice strength, depends on
both thickness and compactness: P 5 P*cHe exp[2c*
(1 2 c)], where P* and c* are constants given in Table
1. This definition of P is equivalent to the standard for-
mulation of Hibler (1979), because cH is approximately
the same as his ‘‘equivalent ice thickness’’ h.

The viscosities increase with pressure and with de-
creasing strain rates:

P
z 5 , (7)

2D

P
h 5 , (8)

22De
2 2 22 22 2D 5 [(ė 1 ė )(1 1 e ) 1 4e ė11 22 12

22 1/21 2ė ė (1 2 e )] . (9)11 22

These parameters represent an idealized visco–plastic
material whose effective viscosities become infinite in
the limit of zero strain rate. Hibler (1979) chose to reg-
ularize this behavior by bounding the viscosities when
the rates of strain are small and the ice pack moves as
an essentially rigid solid; the limiting viscosities are set
to large, constant values so that the ice pack is treated
as a linear viscous fluid undergoing very slow creep.
The maximum value for z is 2.5 3 108 P g s21; h is
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similarly bounded through equations (7) and (8). He also
set minimum values to provide against nonlinear insta-
bilities, with zmin 5 4 3 1011 g s21. For a sufficiently
small value of c, zmax , zmin, in which case z 5 zmin.

For a general account of constitutive laws for sea ice,
see Hibler (1986).

Equations (1), (2), (5), and (6) may be combined as
follows:

m] u 5 ] [(h 1 z)] u] 1 ] (h] u) 1 ] [(z 2 h)] y] 1 ] (h] y) 2 ] P /2t x x y y x y y x x

1 c9[(U 2 u)cosu 2 (V 2 y)sinu] 1 t 1 m fy 2 mg] H , (10)w w ai x o

m] y 5 ] [(h 1 z)] y] 1 ] (h] y) 1 ] [(z 2 h)] u] 1 ] (h] u) 2 ] P /2t y y x x y x x y y

1 c9[(V 2 y)cosu 1 (U 2 u)sinu] 1 t 2 m fu 2 mg] H , (11)w w aj y o

where c9 5 rwCwzUw 2 uz.

b. Motivation for alternative methods

Most sea ice models, starting with the models de-
veloped for the AIDJEX project, agree on a visco–plas-
tic rheology at normal levels of strain rate, differing
perhaps in the shape of the yield curve. The ideal visco–
plastic rheology, however, becomes singular as the strain
rate approaches zero. The AIDJEX model (Coon et al.
1974; Pritchard 1975) regularized this behavior by
adopting a rheology that converts to that of an elastic
material at small strain rates (an ‘‘elastic–plastic’’ rhe-
ology). It is important to realize that such an elastic
rheology is physically realistic for ice only at a labo-
ratory scale, but at geophysical scales there is no reason
to prefer the elastic regularization to any other closure
that ensures that the ice pack behaves as a rigid slab in
the singular, small strain rate regime. Unfortunately, the
AIDJEX model took the limiting elastic behavior quite
literally (Pritchard 1975; Colony and Pritchard 1975),
needlessly introducing severe theoretical and numerical
complexities. Hibler (1979), on the other hand, realized
that what was really needed was a simple regularization
that gave sufficiently ‘‘rigid’’ behavior in the singular
regime. He introduced a regularization (i.e., a ‘‘viscous–
plastic’’ rheology), as described previously, in which
the nonlinear viscosity of the visco–plastic rheology was
bounded at a very high value such that the limiting
behavior was really a very slow creep. This regulari-
zation, although simple, has its own severe numerical
difficulties, which will be discussed shortly. An elastic
formulation, on the other hand, has certain advantages
from the numerical point of view when viewed merely
as a regularization, as explained below. Thus, ironically,
we are led to reintroduce a model that has some resem-
blance to the original AIDJEX model, but in which the
regularization is a simplified elastic model whose pa-
rameters are chosen for numerical, rather than physical
reasons.

The difficulty in solving (10) and (11) is primarily
associated with the presence of shear strength (h ± 0).

The case h 5 0 corresponds to the much simpler and
easier to solve cavitating fluid model (e.g., Flato and
Hibler 1992). This difficulty may be illustrated for the
case of divergence-free velocity (=·u 5 0) and constant
h and m. Setting the pressure, surface stresses, Coriolis,
and tilt terms equal to R, assumed known, the equations
decouple to give

]u
2m 5 h¹ u 1 R, (12)

]t

a simple parabolic equation. The one-dimensional sta-
bility condition for an explicit discretization of (12) is

m
2Dt # Dx . (13)

2h

Given the maximum value of viscosity allowed in the
VP model, the time step is on the order of a second for
a mesh spacing of about 100 km (Ip et al. 1991) and a
hundredth of a second at a resolution of about 10 km,
which we anticipate in our application. This consider-
ation led to the adoption of semi-implicit discretization
schemes so that the equations could be integrated with
a much less stringent time step. The solution methods
currently in use are typically iterative relaxation meth-
ods (Hibler 1979; Oberhuber 1993a) whose rates of con-
vergence scale asymptotically as (1 2 aDx2)k for simple
test problems, where a is a positive constant and k is
the number of iterations (Elman 1994). Furthermore,
iterative methods are usually recursive and therefore
difficult to adapt to parallel machines. There are some
iterative methods, such as the conjugate gradient meth-
od, for example, whose convergence rate is linear with
resolution (Elman 1994) and which can be used suc-
cessfully on parallel machines (Smith et al. 1992). Use
of a preconditioner further improves this method, but
good preconditioners usable on parallel machines are
hard to find. We will consider the use of the precon-
ditioned conjugate gradient method later as one of the
two methods studied in this paper.

Now consider a schematic hyperbolic equation of the
form
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FIG. 1. Triangular regions of a grid cell. Velocity components for
cell (i, j) are in the upper-right corner.

2] u R
2m 5 E ¹ u 1 1 damping. (14)

2 1 2]t h

We have written (14) so that it models a damped elastic-
wave mechanism that converges to the same steady-state
solution as (12); E is a parameter analogous to Young’s
modulus. This equation is meant to represent, albeit very
crudely, an elastic–plastic model of the sea ice in the
regime where elastic waves dominate. The one-dimen-
sional stability bound for an explicit discretization of
(14) is

m
Dt # Dx, (15)!E

and it is possible to arrange the stability restriction due
to damping to be subsumed in (15). Thus, one might
expect such an explicit scheme to converge to the steady
state with a convergence rate proportional to (1 2 aDx)k,
similar to that of optimum methods for parabolic equa-
tions, and much better than that of standard iterative
methods. This is the rationale for considering an elastic
wave adjustment process as the regularization method
for the visco–plastic model in the small strain rate re-
gime. The parameter E controls the value of the strain
rate at which the regularization kicks in.

c. The elastic formulation

To construct such a model, it is usual to separate the
strain rate into the sum of plastic and elastic contribu-
tions (Reuss 1930). The plastic part has already been
given by (6), and the elastic part is approximated by

1 ]sij 5 ė , (16)ijE ]t

where E, as before, corresponds to Young’s modulus.
Note that this is not a physically realistic elastic equa-
tion, but one that is simplified for use as a regularization.
Consistent with (1), we have neglected nonlinear ad-
vection terms. Adding the elastic and plastic contribu-
tions, we obtain

1 ]s 1 h 2 z Pij 1 s 1 s d 1 d 5 ė . (17)ij kk ij ij ijE ]t 2h 4hz 4z

Note that the VP rheology (6) is obtained as the steady-
state limit of (17) or alternatively in the limit E → `,
while in the limit h, z → ` we recover the elastic equa-
tion (16). Thus, the elastic equation (16) controls the
behavior in the limit of infinite viscosity, and therefore
represents a regularization of the visco–plastic rheology.
We also retain the limiting viscosities of Hibler (1979)
in the elastic–viscous–plastic model. Although this is
unnecessary, it allows more direct comparison with the
VP model behavior. Equations (1) and (17) constitute
the EVP model. These prognostic equations for the ve-
locity and stress components, ui and sij respectively, are
discretized explicitly, as described in the following sec-

tion. The characteristics of this discretization are ana-
lyzed in section 4, where we obtain the appropriate
choice of E and Dt to permit efficient integration while
maintaining viscous–plastic balance at slow timescales.

3. Numerical formulations

In this section we outline our numerical techniques
for both the preconditioned conjugate gradient method
and the explicit elastic–viscous–plastic method. The
spatial discretization is specialized for a generalized or-
thogonal B-grid as in Smith et al. (1996) or Murray
(1996), and each logically rectangular grid cell is di-
vided into four triangles, as illustrated in Fig. 1. All of
the thermodynamic and transport variables are given at
the center of the cell, velocity is defined at the corners,
and the stress tensor is constant across each triangle.
We assume contravariant velocity components (velocity
components aligned along grid lines). Here, sij may take
on four different values within a grid cell. This tends
to avoid the grid decoupling problems associated with
the B-grid. Note that the rates of strain , and thereforeėij

the viscosities h and z, are also defined in each triangle.
A land mask Mh is specified in the cell centers, with 0
representing land and 1 representing oceanic cells. A
corresponding mask Mu for velocity and other corner
quantities is given by Mu(i, j) 5 min{Mh(l), l 5 (i, j),
(i 1 1, j), (i, j 1 1), (i 1 1, j 1 1)}.

The velocity component equations [see (1), (5), (17),
or (10), (11)] are coupled through the strain rate ij, theė
viscosities, and the ocean stress tw. We lag the viscos-
ities and c9 to obtain a linear system, but leave the
equations otherwise coupled.

a. Conjugate gradient solution of the viscous–plastic
model

Equations (10) and (11) are discretized semi-implic-
itly in time as follows: if n indicates the previous time
step, then
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m
n11 n11 n11 n11 n11 n nau 2 ] [(h 1 z)] u ] 2 ] (h] u ) 2 ] [(z 2 h)] y ] 2 ] (h] y ) 5 u 1 by 1 t 2 ] P /2 (18)x x y y x y y x x xDty

m
n11 n11 n11 n11 n11 n nay 2 ] [(h 1 z)] y ] 2 ] (h] y ) 2 ] [(z 2 h)] u ] 2 ] (h] u ) 5 y 2 bu 1 t 2 ] P /2. (19)y y x x y x x y y yDty

Here

m
a 5 1 c9cosu

Dty

b 5 m f 1 c9sinu

]Hot 5 t 1 c9(U cosu 2 V sinu) 2 mgx ai w w ]x

]Hot 5 t 1 c9(V cosu + U sinu) 2 mgy aj w w ]y
nc9 5 r C zU 2 u z.w w w

All coefficients, including z and h, are evaluated at time
level n. The viscous–plastic time step, Dty, is typically
on the order of hours.

At time level n 1 1, spatial discretization of (18) and
(19) produces a system of simultaneous equations that
must be solved iteratively for the values of un11 and yn11

at each grid point. The viscous–plastic rheology oper-
ator ]sij/]xj arises from a variational principle with the
functional

1
2 2I(u, y) 5 2 [h(] u 1 ] y) 1 h(] u 2 ] y)EE y x x y2

21 z(] u 1 ] y) ] dx dy, (20)x y

where h and z are assumed constant for the purpose of
the variation in u and y, and we have temporarily ignored
the pressure term. Formulas for ]ui/]xj are provided in
appendix A. We discretize I, then take its variation with
respect to u and y discretely to obtain the second-order
derivative terms in (10) and (11). This procedure ensures
that the discrete operator involved in computing ]s/]x
is both symmetric and negative definite, thereby mim-
icking the corresponding properties of the continuum
operator. Besides providing better fidelity, these prop-
erties are highly desirable from the numerical point of
view. A symmetric, negative definite operator has only
negative real eigenvalues, which means that it is dis-
sipative, ensuring nonlinear stability due to its dissi-
pation of the total kinetic energy (Dukowicz 1997). Fur-
thermore, symmetry is a prerequisite for some highly
effective iterative solution methods, such as the con-
jugate gradient method to be discussed later. There is
no guarantee, particularly on a nonuniform grid, that a
conventional spatial discretization such as that used by
Hibler will have these properties. However, on a uniform
grid, the variational discretization reduces to the stan-
dard centered difference formula.

The coefficients of all ‘‘n 1 1 terms’’ in (18) and
(19) translate into a banded matrix, which may be rep-
resented by the symmetric operator

TA A B
,

T T[ ]B C C

where
TA A 5 2] (z 1 h)] 2 ] h] 1 ax x y y

B 5 2] h] 2 ] (z 2 h)]y x x y

TB 5 2] h] 2 ] (z 2 h)]x y y x

TC C 5 2] h] 2 ] (z 1 h)] 1 a.x x y y

The resulting matrix equation is solved iteratively
with a preconditioned conjugate gradient method (El-
man 1994; Ashby et al. 1990). The conjugate gradient
method, along with other similar methods in its family,
is particularly attractive because it is optimal among all
linear iterative methods in reducing the error in a par-
ticular error norm. Because of this, it has received much
attention in the literature and is being widely used, al-
though not in the ice modeling community. The pre-
conditioning matrix is given by

A9 0
,[ ]0 C9

where A9 is the tridiagonal matrix extracted from the
coefficients of ATA, which couples the u-velocity com-
ponents along a line of constant j, and C9 is the cor-
responding tridiagonal matrix extracted from CTC,
which couples y-velocity components along a line of
constant i.

Success of the method hinges on symmetry of the
iterating and preconditioning matrices; for this reason
we lag the terms 6bu during the solution of (18) and
(19). This treatment of the Coriolis term, which restricts
the time step to about 2 hours for accuracy, might be
remedied by applying a predictor–corrector method to
these terms as in Zhang and Hibler (1996). This and
other improvements to the VP time stepping scheme are
reserved for future work.

We have employed a simple linearized Backward-
Euler time discretization scheme for (18) and (19). Other
methods for dealing with the nonlinearity, such as those
employed by Hibler (1979) and Zhang and Hibler
(1996), are somewhat more accurate but have their own
difficulties. The numerical method of Hibler (1979),
which we will refer to as ‘‘H79,’’ iteratively solves the
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system (10) and (11) at each time step with successive
overrelaxation, utilizing a predictor–corrector method to
march the equations in time. Specifically, predicted ve-
locities at time level n 1 1/2 are used to compute the
coefficients of the linearized terms (namely, z, h, a, and
b) before advancing to the next time level. Hibler and
Ackley (1983) found a splitting problem with this pro-
cedure in cases of small nonlinear viscosities (free drift),
which was corrected by a modified averaging procedure.

As with the predictor–corrector scheme, problems
also arise in methods that use numerical spatial splitting
and, in particular, in those methods that do not treat the
entire strain rate tensor implicitly. For example, Zhang
and Hibler (1996) also use successive overrelaxation to
solve (10) and (11), along with a predictor–corrector
time discretization scheme similar to that of Hibler
(1979). In this case, however, the cross derivative terms
are treated at time level n instead of n 1 1, and the
equations decouple. Then the equations for uij are solved
iteratively along an entire row (i.e., constant j) before
continuing to the next row, and the equations for yij are
solved similarly along columns. We will refer to this
method as ‘‘ZH96.’’ Stössel et al. (1994) found that
treating the diagonal part of the strain rate tensor im-
plicitly and the off-diagonal terms explicitly produced
anomalous ice drifts of 6 cm s21. For the conjugate
gradient method described above, the strain rate tensor
remains unsplit.

b. The elastic–viscous–plastic model
Discretization in time of the momentum equation (1)

is analogous to that of (18) and (19), except that the

stress tensor is determined prognostically, and both (1)
and (17) are subcycled with an effective EVP time step
of length Dte 5 Dtz/N for some integer N . 1 and time
interval Dtz. That is, N smaller time steps are taken with
(1) and (17), holding h and z constant, for each time
interval [tn, tn 1 Dtz]. Typically, Dtz 5 Dty, so that Dty

is often both the viscous–plastic implicit time step and
the interval at which viscosity is updated in the EVP
model. Subcycling maintains the time scale on which
the viscous–plastic material characteristics are chang-
ing, ensuring that the VP and EVP formulations are
equivalent in the limit Dte → 0, as will be seen later.

Denoting the subcycling with the index k, we time
step (17) as follows, holding the viscosities constant at
time level n:

1 E (h 2 z) EP
k11 k k11 k11(s 2 s ) 1 s 1 E s d 1 dij ij ij l l ij ijDt 2h 4hz 4ze

k5 Eė .ij (21)

(Since they both depend on the thickness variables, E
and P also change on the Dtz time scale, as will be seen.)
This is a simultaneous equation for the three distinct
stress tensor components, s11, s12, and s22, which may
be inverted directly. Incidentally, we found that com-
puting s11 and s22 from formulas that have the same
form is important for maintaining symmetry of the nu-
merical solutions in the x and y directions, even at some
computational expense.

Given the updated stress tensor , the momentumk11sij

equation (1) is marched as follows:

k11m ]s ]Hij ok11 k k11 k11 k11(u 2 u ) 5 1 t 1 c9[(U 2 u )cosu 2 « (U 2 u )sinu] 1 « m fu 2 mg , (22)i i ai wi i ij3 wj j ij3 jDt ]x ]xe j i

where c9 5 rwCwzUw 2 ukz. This equation may be solved
for the velocity components as follows:

k11m ]s1 j2 2 k11 k k(a 1 b )u 5 (au 1 by ) 1 a 1 tx1 2Dt ]xe j

k11]s2 j1 b 1 ty1 2]xj

k11m ]s2 j2 2 k11 k k(a 1 b )y 5 (ay 2 bu ) 1 a 1 ty1 2Dt ]xe j

k11]s1 j1 b 1 t ,x1 2]xj

where a 5 m/Dte 1 c9cosu and b, tx and ty are defined
in section 3a.

The proper spatial discretization of sij is determined
analogously to the variational principle method of (20).
Given formulas for ]ui/]xj provided in appendix A, we
demand that in each triangle

]u ]si ij
s 1 u dA 5 0. (23)EE ij i1 2]x ]xj j

Taking the variation of (23) with respect to ui yields
formulas for the spatial derivatives of sij. This is equiv-
alent to the formalism used in the conjugate gradient
solution of the VP model. Since Eq. (23) is another form
of the variational formulation for deriving the spatial
discretization, it also results in a symmetric, negative
definite discrete operator, which ensures a decreasing
total kinetic energy. Note that this spatial discretization
is different from that in Hibler (1979).
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FIG. 2. Stability diagram for the 2D dynamics equations (1) and
(17). Given Dx, we choose E and Dte so that Dte/Te lies to the left of
the vertical asymptote. In this region the viscous–plastic timescale
Ty is irrelevant.

4. Heuristic analysis of the elastic–viscous–plastic
model

a. Simplified model description

The sea ice model equations are strongly nonlinear
and very difficult to analyze. In this section we will
consider a simplified one-dimensional version of the
equations describing the EVP model in order to better
understand the behavior of the model and as an aid in
the selection of parameters. The simplified model as-
sumes all spatial variation and motion occurs only in
the x direction, all coefficients are constant, all forcing
is absorbed into a single term t, the constant term P/4z
is absorbed into s 5 s11, and s12 5 s22 5 0. The model
therefore is not an exact representation of the EVP mod-
el but is sufficiently similar to be useful for a heuristic
analysis. The resulting equations are

1 ]s s ]u
1 5 (24)

E ]t z ]x

]u ]s
m 5 1 t, (25)

]t ]x

where z is taken to be an effective constant viscosity.
The VP model is recovered in the limit E → `:

2]u ] u
m 5 z 1 t, (26)

2]t ]x

which will be considered as the reference for later com-
parisons. Conversely, in the limit z → `, (24) and (25)
reduce to a purely elastic model, which supports un-
damped elastic waves,

2 2] u ] u 1 ]t
25 c 1 , (27)e2 2]t ]x m ]t

where ce 5 E/m is the elastic wave speed. It is con-Ï
venient to introduce a viscous timescale

m
2T 5 Dx , (28)y z

and an elastic timescale,

m Dx
T 5 Dx 5 . (29)e !E ce

As discussed in section 2, Ty is on the order of a hun-
dredth of a second for resolutions of 10 km. In contrast,
as we will see shortly, we may be allowed to choose Te

to be several orders of magnitude larger.
Equations (24)–(26) may be discretized analogously

to the full set of equations given in section 3. Since the
equations are linear with constant coefficients, a von
Neumann stability analysis may be performed; it is out-
lined in appendix B for the one-dimensional EVP case
described in section 5. A two-dimensional stability anal-
ysis for the complete set of equations, analogous to that
given in appendix B and assuming Dx 5 Dy, is sum-

marized in Fig. 2 in terms of the timescales (28) and
(29). It is remarkable that, provided Dt # Te 2, theÏ
numerical scheme is stable irrespective of the value of
the viscous timescale Ty. Had (26) been discretized ex-
plicitly, the stability limit would have been Dt # Ty /2,
implying a prohibitively small value of the time step.
We will thus be able to integrate the EVP model with
a time step

Dte 5 Te 2,Ï (30)

which is much larger than the shortest viscous timescale
Ty, without resorting to implicit discretization. The time
discretization of the EVP model therefore subsumes the
viscous stability limit as mentioned in section 2.

In what follows it is essential to understand the effect
of the time discretization and so, in the interest of sim-
plicity, we will consider a continuous spatial represen-
tation, keeping in mind that only wavenumbers k which
satisfy k2Dx2 # 1 are meaningful on a grid. The time
discretization of the implicit VP model is

2 n11m ] u
n11 n n(u 2 u ) 5 z 1 t , (31)

2Dt ]xy

where un is the value of u at time level n, and the cor-
responding discretization of the EVP model is

n11 n1 s ]u
n11 n(s 2 s ) 1 5 (32)

EDt z ]xe

n11m ]s
n11 n n(u 2 u ) 5 1 t , (33)

Dt ]xe

where Dte is given by (30), and

Dty 5 N k 1
Dte

is the number of steps, or subcycles, that the EVP model
takes for each step of the VP model. One of the objec-
tives in this section is to estimate a suitable value for
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FIG. 3. Domains of accuracy of the elastic–viscous–plastic and
viscous–plastic models under imposed forcing. We choose numerical
parameters so that the domains are as common as possible.

N, or in other words, to define an EVP time step Dte

such that min(Ty) K Dte K Dty. In this section, Dtz 5
Dty.

b. Forced response

Since (31)–(33) are linear with constant coefficients,
it is possible to do a rather complete analysis. However,
it is sufficient for our purposes, since the ice is forced
primarily by time-varying winds, to focus on the am-
plitude response to periodic forcing for solutions in the
form of plane waves, that is, (u, t) 5 (û, )ei(kx2vt), wheret̂
v is the angular frequency of the forcing. We charac-
terize the response by a nondimensional parameter F,

mû
2 2F 5 k Dx ,

T t̂y

utilizing the damping factor

d 5 5 5 .2ivDt 2ivNDt Ny ee e de

Here, de 5 is the damping factor for an elastic2ivDtee
time step Dte. For convenience, define x 5 k2Dx2Dty /Ty.
Substituting plane wave solutions into the ‘‘exact’’
equation (26) and discretizations (31)–(33), we obtain
the following response in the three cases:

Exact:

1
F 5 ,

1 2 ivDt /xy

Viscous–plastic:

1
F 5 ,

1 1 (d 2 1)(1 1 1/x)

Elastic–viscous–plastic:

N T /Te yF 5 1 1 1 (d 2 1) 2 .e@ 1 2[ ]x d 1 (d 2 1)T /Te e e y

Assuming vDte K 1, the EVP response parameter be-
comes

N 1
F 5 1 1 1 (d 2 1) 2 . (34)e@ 1 2[ ]x T /T 2 ivDty e e

We can deduce by inspection that the response in the
viscous–plastic case is accurate (i.e., approximates the
exact response) whenever d ; 1, x K 1, and therefore
the conditions for accuracy are

vDt K 1 (35)y

Dty2 2k Dx K 1. (36)
Ty

In the elastic–viscous–plastic case, there are two pos-
sibilities:

TyvDt K K 1 (37)e Te

Dt Te e2 2k Dx K 1 (38)
T Ty y

and

Ty K vDt K 1 (39)eTe

2 2k Dx
K 1. (40)

vTy

These are consistent with the assumption made to obtain
(34).

c. Choosing appropriate parameters

Conditions (35)–(40) may be more easily understood
graphically. Figure 3 illustrates the domains of accuracy
for the two models, using k2Dx2Dte/Ty as the ordinate
and vDte as the abscissa. In general, the EVP domain
is larger than the VP domain: if 1/N , Ty /Te, then the
VP domain is entirely contained within the EVP domain.

It is reasonable to choose parameters so that the ac-
curacies of the two models are approximately balanced,
or equivalently, that the domains of accuracy of the EVP
model and the VP model are as common as possible. It
is therefore desirable to have

Dt 1 Te y5 ø . (41)
Dt N Ty e

In view of (30), this is equivalent to

D 5 Ty Dty 2,2t Ïe (42)

and therefore E may be determined by means of (29):
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2Ï2mDx
E 5 . (43)

T Dty y

It is interesting that (42) implies that a suitable sub-
cycling time step Dte is proportional to the harmonic
average of Dty and the viscous timescale. This result
highlights the benefits of the EVP model: the EVP time
step may be orders of magnitude larger than the explicit
VP time step. Since there is an entire range of viscous
timescales associated with the very large range of ef-
fective viscosity coefficients, it may be appropriate to
choose some intermediate value of the viscous timescale
to use in estimating E. The larger the value of E one
chooses, the larger the role of the elastic versus the
visco–plastic strain rates and the shorter the time step
Dte must be.

The parameter E cannot be considered a constant
since then the EVP model would have dynamical effects
even under free-drift conditions (cH → 0) when the ice
rheology should play no role. To avoid this problem, it
is sufficient to assume that E has the form E 5 cHE*
for some constant E*. Given suitable values of Ty and
Dty(Dtz), we calculate Dte by (42), then calculate E for
the two-dimensional problem as

2E r cHo i 2 2E 5 min(Dx , Dy ), (44)
2Dte

where 0 , EV , 1. Thus, E → ` as Dte → 0, and the
VP rheology (6) is obtained from the EVP formulation
(17). This behavior is illustrated in Fig. 8, discussed in
the following section.

5. A one-dimensional test problem

In this section we further compare the behavior of
the elastic–viscous–plastic and viscous-plastic models
for an essentially 1D test problem, but one which now
includes nonlinear effects. Consider the more complete
one-dimensional form of (1) and (17):

1 ]s s h 2 z P ]u11 11
1 1 (s 1 s ) 1 5 (45)11 22E ]t 2h 4hz 4z ]x

1 ]s s12 12
1 5 0 (46)

E ]t 2h

1 ]s s h 2 z P22 22
1 1 (s 1 s ) 1 5 0 (47)11 22E ]t 2h 4hz 4z

]u ]s11m 5 1 t,
]t ]x

(48)

where, as in section 4, we have lumped all forcing into
t and assumed that all motion and spatial variation oc-
curs only in the x direction.

a. Steady state

We now consider the associated steady-state problem,
which we can solve analytically with constant t and
boundary conditions u 5 0 on the domain 0 # x # L.
At steady state, the stress tensor components are ob-
tained from (45)–(47):

]u P
s 5 (z 1 h) 2 (49)11 ]x 2

s 5 0 (50)12

]u P
s 5 (z 2 h) 2 . (51)22 ]x 2

Noting that h 5 z/4 for e 5 2 in (49), we have

5z ]u P
s 5 2 . (52)11 4 ]x 2

Equation (48) states that

]s11 5 2t. (53)
]x

Combining (52) and (53), assuming P is constant, we
have

] 5z ]u
1 tx 5 0. (54)1 2]x 4 ]x

Recalling (7) and (9) and noting that the strain rate has
only one component, 11 5 ]u/]x, we obtain D 5 5/ė Ï
4z]u/]xz. Therefore, the viscosity z can have one of three
possible values: zmin, zmax, and

]u
P Ï5 . (55)@1 ) )2]x

Now, ]s11/]x cannot simultaneously be both a constant,
as required by (53), and a delta function, as implied by
(52) and (55); hence the solution must be composed of
segments characterized by zmin and zmax. Each segment
is of the form

5 1
2zu 1 tx 1 c x 1 c 5 0, (56)1 24 2

where c1, c2 are constants. There will be three segments:
two boundary segments characterized by zmin and one
in the middle characterized by zmax. We therefore have
a total of six undetermined constants, plus the location
of the interior break points. Boundary conditions and
continuity of the solution at the two interior break points
provide four constraints. Because of the lack of slope
continuity at the break points, integral moments of (54)
provide the additional constraints:

L ] 5z ]u
nu 1 tx dx 5 0,E 1 2]x 4 ]x0

where n 5 0, 1, 2, ··· . This closes the system.
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FIG. 4. Cross sections of the velocity component u produced by
the (2D) viscous–plastic and elastic–viscous–plastic codes as solu-
tions of the 1D test problem and the 1D numerical solution.

TABLE 3. Initial values and parameters for the tests shown in Fig.
4. The error tolerance on the residual for the VP implicit schemes is
given by err.

Initial values Parameters

c 5 0.9
H 5 60.0 cm
h 5 10.0 cm

Hs 5 10.0 cm
hs 5 1.0 cm
u 5 0.0 cm s21

Eo 5 0.25
Dty 5 21 600 s
Dtz 5 21 600 s
Dte 5 300 s

t 5 0.09 g cm21 s22

err 5 1025

FIG. 5. Steady-state velocity component u for the 1D problem produced by the conjugate
gradient VP model. The solution is inherently two-dimensional due to the boundary conditions.
The cross section shown in Fig. 4 lies at j 5 50, halfway along the y axis.

This solution is confirmed by numerical results, to be
shown shortly. We now present a series of simulations
that explore and compare the behavior of the EVP and
VP models. Unless otherwise noted, parameter values
for the simulations in this section are those given in
Table 3. The 1D solution was obtained with a simple
numerical code that integrates (45)–(48) to steady state.

As predicted by our analysis, the steady-state solution
is composed of line segments, illustrated in Fig. 4 (la-
beled ‘‘1D’’). Figure 4 also presents corresponding nu-

merical solutions of this problem from the 2D models.
Due to the imposed land mask, the numerical solutions
remain fundamentally two-dimensional, as illustrated in
Fig. 5, and therefore not exactly comparable to the 1D
solution. Implementing Neumann or periodic boundary
conditions in the SOR viscous–plastic codes in order to
make the solution more one-dimensional would have
been time consuming and not necessary for our pur-
poses. The four 2D models produce remarkably similar
steady-state solutions.

The 2D equations were solved on a 40 3 100 grid
of square cells (Dx 5 Dy 5 12.7 km), and the cross
sections shown are centrally located in the y direction
(j 5 50). The integration began with a uniform ice field
at rest, no-slip conditions were maintained along all four
boundaries, and all of the forcing terms were replaced
by a single stress t 5 (t, 0). The CPU times shown in
Table 4 represent the time used for the dynamics cal-
culation alone; for each case, 31 s were spent in other
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TABLE 4. Estimated total CPU times for the dynamics calculations
by each of the four models and the corresponding average CPU time
spent for each of the 4000 grid cells for the tests shown in Fig. 4.

Model CPU CPU/cell

Elastic
Conjugate gradient
ZH96
H79

313 s
520 s

6083 s
12 321 s

0.08 s
0.13 s
1.52 s
3.08 s

FIG. 6. Transient response of the VP model to constant surface
stress for different time steps. Because of the time lag inherent in
the calculation of z, the viscous–plastic model requires numerous
time steps to reach steady state. Thus, small time steps, on the order
of 10 minutes for this test problem, are necessary to obtain a con-
verged response to an impulsively applied physical stress. Velocity
at the center of the domain (i 5 20) is shown.

sections of the calculation and are not included in the
table. These calculations were performed by a CRAY
Y-MP8/8128 supercomputer. The models were inte-
grated for 2700 simulated hours, taking 450 time steps
with Dtz 5 Dty 5 21 600 s. The EVP dynamics were
subcycled 72 times for each viscous–plastic time step,
thus taking an effective EVP time step of length Dte 5
300 s. The EVP numerical model is nearly 40 times
more efficient than the original VP code on this test
problem.

The elastic and conjugate gradient solutions shown
in Figs. 4 and 5 are at steady state; the others are not.
Since the corresponding EVP solution is essentially
identical to Fig. 5, it is not shown. Doubling the size
of the domain from 40 3 100 to 40 3 200, keeping the
resolution the same, reduces the magnitude of the EVP
steady-state velocity to about 38 cm s21, closely ap-
proximating the 1D numerical solution.

b. Transient behavior

We investigate the transient behavior of the EVP and
VP models using two one-dimensional numerical codes,
the 1D EVP code mentioned earlier and its viscous–
plastic counterpart, which uses tridiagonal matrix in-
version to implicitly solve the equation

]u ] 5z ]u P
m 5 2 1 t. (57)1 2]t ]x 4 ]x 2

Both 1D models are discretized as described in section
3 for the 2D models.

Although the steady-state solutions of the VP and
EVP models are the same, their transient behavior dif-
fers for typical values of Dty and Dtz. First, consider the
VP model transient behavior for different values of Dty,
shown in Fig. 6. The very slow response of the VP
model for large Dty is due to the linearization used in
the rheology operator. If the viscosity z is held at time
tn during integration to time tn11 5 tn 1 Dty, the lin-
earized ice rheology operator in the viscous–plastic case
(57) takes the form

n11] ]u
nz .1 2]x ]x

Steady state is reached when zn11 5 zn. Convergence
of this ‘‘outer’’ iteration determines the effective time
response. The adjustment process is described fully for

this test problem in appendix C, where we determine
the steady-state solution analytically and estimate the
effective transition time to steady state, about 35 days
for Dty 5 6 h. Decreasing Dty lessens the time lag be-
tween zn and ]un11/]x; time steps on the order of a minute
produce the ‘‘true inertial limited response’’ (Hibler
1979; appendix B), illustrated in Fig. 6. That is, in order
to respond accurately to an impulsively applied t, the
viscous–plastic numerical model must be integrated
with a time step of 60 s or less. We refer to this solution
(obtained with Dty 5 60 s) as the reference solution.

Subcycling the EVP dynamics overcomes this diffi-
culty somewhat. In this case, the ice rheology term has
the form

k] ]u
nz ,1 2]x ]x

where k 5 1, 2, ··· , N denotes the subcycling. The
improved estimates of ]u/]x during the VP time step
improve the adjustment of the solution. When Dtz 5 Dty

exceeds the stability limit, as it often does, the EVP
results generally lie within an envelope bounded by the
viscous–plastic solutions for Dty → 0 and Dty → `, as
indicated in Fig. 7.

Without subcycling, Dte 5 Dtz and the elastic waves
do not damp out within the viscous–plastic time step.
The EVP results are then quite energetic for larger time
steps, as illustrated in Fig. 8. As the time step approaches
zero, however, the solutions converge to the reference
solution. Furthermore, the two models produce identical
results when Dty and Dtz are much shorter than the vis-
cous–plastic stability limit, regardless of subcycling.

Poor adjustment of the VP model has been noticed
previously. Hibler (1979) remarks that the viscous–plas-
tic rheology is slow to converge to steady state and
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FIG. 7. Response of the EVP model as a function of Dte, compared
to the VP model response for Dty 5 60 s and 21 600 s. Elastic–
viscous–plastic solutions Dte 5 60 s (N 5 360), 100 s (N 5 216),
and 216 s (N 5 100), with viscosity updated every Dtz 5 21 600 s,
all give better transient response than the viscous–plastic solution
with Dty 5 21 600 s, but not as good as the converged viscous–plastic
solutions with Dty 5 60 s.

FIG. 8. Response of the EVP model without subcycling (viscosity
updated on every step) as a function of time step. A substantial
amount of elastic energy is excited, but the solution converges to the
reference solution (solid) when Dte 5 60 s.

FIG. 9. Response of the EVP and VP models for different ice
concentrations. While both the VP and EVP solutions exhibit appro-
priate transient behavior for c # 0.8, when ice rheology plays no
role, the VP model response deteriorates as ice concentration in-
creases. Velocity at the center of the domain (i 5 20) is shown; Dtz

5 Dty 5 21600 s and Dte 5 216 s.

requires several time steps with constant forcing to re-
spond accurately. Similarly, Flato and Hibler (1992)
note that even the cavitating fluid model should be sub-
cycled several times without changing the forcing. How-
ever, many numerical simulations that utilize the vis-
cous–plastic rheology, including numerous sensitivity
studies, use 1-day time steps with daily varying winds
(e.g., Hibler and Walsh 1982; Hibler and Ackley 1983;
Walsh et al. 1985; Ip et al. 1991; Riedlinger and Preller
1991; Chapman et al. 1994). These wind stresses may
vary significantly on timescales of a day or so. For
example, the wind stress imposed in this example is less
than 0.1 dyn cm22. Since the initial change in wind stress
occurs over the first time step (6 h), this is equivalent
to a change in the applied wind stress of 0.4 dyn cm22

per day. The physical wind stress may vary as much as
5 dyn cm22 per day (Coon 1980), an order of magnitude
larger. Not surprisingly, we observe that when integrated
with 1-day time steps, the VP numerical model exhibits
a weak response to strongly varying winds. The im-
proved transient behavior of the EVP model enhances
its ability to capture the response of the ice to such
variations in the stress. We will explore the models’
responses to more realistic, time-dependent forcing in
the next section.

Both the viscous–plastic transition to steady state and
the magnitude of u at steady state depend on ice con-
centration, as shown in Fig. 9, since the maximum vis-
cosity zmax varies with compactness as cexp[c*(1 2 c)]
through the pressure P. Because of this exponential de-
pendence on c, P and zmax are about two orders of mag-
nitude less for ice concentrations of 0.8 than for 0.9,
and therefore the ice rheology is immaterial for c , 0.8,
and one cannot distinguish between elastic and viscous–
plastic models.

All of the calculations reported here were done with
c 5 0.9. Holland et al. (1993) point out that shear stress
becomes significant for ice concentrations greater than
about 0.9. Furthermore, while open water typically ex-
ists year round throughout the Arctic, both Arctic and
Antarctic ice concentrations are predominantly greater
than 90% during the winter (Stössel and Claussen 1993;
Gloersen et al. 1992).

6. A two-dimensional problem

As a further test, we compare the results of the nu-
merical formulations on a geometrically simple 2D
problem in which the geostrophic ocean current and
wind stress terms have physically realistic magnitudes.
Table 5 contains the parameter values used here. A cir-
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TABLE 5. Initial values and parameters for the 2D tests.

Initial values Parameters

c 5 0.9
H 5 200.0 cm
h 5 10.0 cm

Hs 5 10.0 cm
hs 5 1.0 cm
u 5 0.0 cm s21

Eo 5 0.25
Dty 5 86 400 s
Dtz 5 21 600 s
Dte 5 216 s

t 5 1.00 g cm21 s22

err 5 1026

FIG. 10. The VP velocity component u for the 2D test case at t 5 25 days, produced with
the H79 numerical model.

cular ocean current is used that has an amplitude on the
order of 10 cm s21:

U 5 120(2y 2 L )/2Lx y y

V 5 220(2x 2 L )/2L ,y x x

where 0 # x # Lx and 0 # y # Ly. The ocean drag
terms are computed as in (2). The wind stress is also
specified analytically, but is based on Arctic data for
the month of January 1986 provided by the Naval Re-
search Laboratory. Fourier analysis of data in the Green-
land Sea (9.28W, 75.58N) indicates that the characteristic
timescale of the wind forcing is generally between 1
and 5 days. Based on these data, we allow the wind
stress to vary 33% from a divergent stress field whose
average amplitude is 3 dyn cm22, with a period T 5 4
days:

2pt 2px py
t 5 t sin 2 3 sin sini 1 2 1 2 1 2[ ]T L Lx y

2pt 2py px
t 5 t sin 2 3 sin sin .j 1 2 1 2 1 2[ ]T L Ly x

Coriolis and ocean tilting effects have been omitted.
Note that the time variation of this forcing occurs only
in its magnitude. Although directional variation is not
included, this (relatively quiescent) wind stress varies
sufficiently to illustrate the difficulties one encounters
with the VP model.

The model equations were integrated for 25 simulated
days from rest with a time step Dty 5 1 day, on a 40
3 40 grid of square cells (Dx 5 Dy 5 12.7 km). Such
a large time step is not feasible for the EVP dynamics
model; for this case, Dtz 5 6 h and Dte 5 216 s. These
time steps were chosen to illustrate the VP model’s in-
accuracy for conditions under which it is often used,
and the improvement offered by the EVP formulation.
Strictly speaking, results from the various codes are
comparable only for very small Dty and Dtz, although
we observe in Figs. 10 and 11 that the values of Dty

and Dtz used here are sufficiently small to produce com-
parable results.

These results differ slightly from a time-accurate ref-
erence solution, which we define as that produced by
the conjugate gradient method with a time step of 60 s.
In Fig. 12, we present the differences of domain-aver-
aged kinetic energies per unit mass for each of the meth-
ods with that of the reference solution. This comparison
indicates that while all of the methods reach a quasi-
steady state, the EVP model is much more accurate
during the initial ‘‘spin up’’ from rest, and suggests that
the EVP model will behave significantly better under
the severe wind forcing conditions observed in the polar
regions. For example, Arctic winds have been observed
to change as much as 350% in a three-day period (Reyn-
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FIG. 11. The EVP velocity component u for the 2D test case at t 5 25 days. Comparison
with the corresponding VP solution in Fig. 10 shows that the EVP model produces solutions
equivalent to those of the VP model and validates the 1D results of sections 4 and 5.

TABLE 6. Estimated total CPU times for the 2D tests by each of
the models and the corresponding average CPU time spent for each
of the 1600 grid cells.

Model CPU CPU/cell

Elastic
Conjugate gradient
H79

41 s
9 s

107 s

0.026 s
0.006 s
0.067 s

FIG. 12. The difference between the domain-averaged kinetic en-
ergy per unit mass of the elastic, conjugate gradient, and H79 methods
computed with Dty 5 1 day and the domain-averaged kinetic energy
per unit mass of the conjugate gradient solution computed with Dty

5 60 s (the reference solution). For the elastic solution, Dtz 5 6 h
and Dte 5 216 s. The viscous–plastic models require 4 days to reach
a quasi-steady state, after which their response to the variable forcing
tends to lag behind the exact response.

olds 1984), and the ice edge may move 35 km day21

under gale conditions (Roed and O’Brien 1983). In gen-
eral, geostrophic winds are responsible for 60%–80%
of the daily ice variance (Serreze et al. 1989). On these
timescales, it is essential that a numerical model for ice
dynamics respond accurately to the imposed forcing.

Furthermore, the magnitude of the differences be-
tween the viscous–plastic model solutions and the ref-

erence case in Fig. 12 indicate that the VP models are
slow to respond to more typical forcing variations. The
kinetic energy of the H79 solution is better than the
conjugate gradient solution by about a factor of 2 due
to effectively two iterations of the linearization being
taken in the predictor–corrector method used for the
time stepping. Incorporating a predictor–corrector meth-
od into the time discretization of the conjugate gradient
numerical model would improve its accuracy to that of
the H79 model, but degrade its efficiency. Regardless,
neither VP model is as accurate as the EVP model.

The CPU times given in Table 6 represent the time
used for the dynamics calculation alone; the 4 s spent
performing I/O for each case is not included in the table.
Implementing a two-step time discretization scheme for
the conjugate gradient VP numerical model would im-
prove its forcing response to roughly the level of the
H79 code and slow it down by approximately a factor
of 2. Note that for the Dty 5 60 s calculation, the con-
jugate gradient dynamics used 1379 s CPU. We have
not made the corresponding calculation with the H79
method, but based on the figures in Table 6, the H79
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model would have taken about 12 times longer, or 4.5
h, to perform this calculation. Thus, the standard VP
model would require several CPU hours to reach the
level of accuracy obtained with Dty 5 60 s, which the
EVP model simulates fairly well in only 41 CPU sec-
onds using Dtz 5 6 h and Dte 5 216 s.

7. Summary

Despite its physical and computational problems, the
nonlinear viscous–plastic rheology proposed by Hibler
(1979) is the most widely accepted model for sea ice
dynamics. In the model’s physical description, the ice
viscosity suffers a severe singularity: treated as a vis-
cous fluid, rigid sea ice has infinite viscosity. Hibler
regularized this problem by setting a maximum viscosity
bound, thereby allowing the ice to creep slowly rather
than being completely rigid. Even so, the viscosity rang-
es over many orders of magnitude, and integrating the
implicit VP numerical model requires large computa-
tional resources, particularly for high resolution grids
on parallel architectures. Using smaller maximum vis-
cosity values increases the model’s computational ef-
ficiency but produces less accurate results. Our explicit
elastic–viscous–plastic model utilizes an elastic mech-
anism in regions of rigid ice to significantly increase
the computational efficiency of the VP numerical model.
For comparison purposes, we have chosen to retain the
maximum viscosity bound for the results presented here.
In this paper we also present a fast, though still implicit,
conjugate gradient method for solving the VP equations.
Although the conjugate gradient method’s efficiency is
comparable to the EVP method’s on serial machines,
the explicit EVP model will be substantially more ef-
ficient on parallel computers.

Furthermore, due to its semi-implicit treatment of the
ice rheology, the standard numerical formulation of the
VP model has very poor time response for time steps
typically used by researchers in the field, which are often
as long as a day. Our investigation of a simplified, one-
dimensional version of the VP model indicates that the
viscous–plastic model behavior is acceptable only for
wind stresses that vary slowly. However, for wind stress-
es that vary significantly on timescales of a day, the
viscous–plastic model response is weak.

This computational pathology may be resolved by
improving the numerical method or by changing the
physical parameterization in the model. The EVP model
represents a combination of these approaches: its (albeit
nonphysical) elastic waves enable the use of an efficient,
explicit numerical method. We observe improved tran-
sient behavior of the solutions, enhancing the model’s
ability to capture the ice response to variations in the
imposed stress. However, because the EVP model is
based on the same linearized viscous–plastic rheology
as the VP model, it may inherit similar problems in
some parameter regimes.

We have shown that a large range of the elastic wave

parameter E exists for which the EVP numerical method
is both stable and efficient. In particular, this allows the
elastic time step to be orders of magnitude larger than
the viscous–plastic timescale in areas of rigid ice. Sev-
eral considerations must be weighed when choosing the
model parameters. The timescale of the external forcing
places an upper bound on Dty or Dtz. The choice of the
subcycling time step Dte is based on considerations of
efficiency and accuracy; some guidelines for choosing
Dte are given in section 4. The parameter values used
in this paper, namely for Dtz, E, and Dte, are representive
of suitable values that improve both the numerical ef-
ficiency and accuracy of the viscous–plastic ice model.
A more complete parameter sensitivity study will be
reported later.

Other numerical concerns involve maintaining op-
erator symmetry and energy dissipation properties in
the discretization of the stress tensor, which arises from
a variational principle. Dividing the grid cells into four
triangles for spatial discretizations results in higher res-
olution of the stress tensor and viscosity fields than of
thickness and velocity. These numerical improvements,
along with the formulation of the EVP model, have
resulted in a fast, efficient model of sea ice dynamics
well suited to climate studies on parallel machines.

We have coupled the EVP dynamics model to ther-
modynamic and transport components and will be test-
ing this ice model with daily atmospheric fluxes and
validating it with remotely sensed and in situ obser-
vations. More complete descriptions of the thermody-
namics and transport components and results from the
validation of the complete sea ice model are forthcom-
ing.
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APPENDIX A

Numerical Formulations
Formulas for the spatial derivatives of a field Aij, de-

fined at the upper-right corner of the grid cell (see Fig.
1), are given below. D and D are midcell lengths.c cx yij ij

Assuming the field A is linear in x and y within each
triangle,
North:

]A A 2 Aij i21 j5
n]x Dxij

]A A 1 A 2 A 2 Aij i21 j ij21 i21 j215
c]y 2Dyij
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FIG. C1. The number of iterations, k, needed for z to change from
zmax to zmin, as a function of x. The vertical lines indicate the break
points, between which z 5 zmax. The number of steps required for
the solution to reach steady state is given approximately by the largest
value of k at the grid points nearest the break points, about 140 in
this case.

East:

]A A 1 A 2 A 2 Aij ij21 i21 j i21 j215
c]x 2Dxij

]A A 2 Aij ij215
c]y Dyij

South:

]A A 2 Aij21 i21 j215
n]x Dxij21

]A A 1 A 2 A 2 Aij i21 j ij21 i21 j215
c]y 2Dyij

West:

]A A 1 A 2 A 2 Aij ij21 i21 j i21 j215
c]x 2Dxij

]A A 2 Ai21 j i21 j215 .
e]y 2Dyi21 j

APPENDIX B

Stability of the 1D Equations

We perform a von Neumann stability analysis of the
simplified, 1D dynamics equations (45)–(48). Discre-
tizing time, these equations become

n11m ]s
n11 n(u 2 u ) 2 5 0

Dt ]x
n11 n1 5s 25 ]u

n11 n(s 2 s ) 1 2 5 0.
EDt 4z 16 ]x

Assume that both u and s have the form aneijkDx, and
an11 5 lan. Then the characteristic equation is

l2 (1 1 a) 1 l (22 2 a 1 k2b) 1 1 5 0,

where a 5 5EDt/4z and b 5 25EDt2/16m. Solutions are
stable whenever zlz , 1, that is, for

1
2a . k b 2 2.

2

Let j 5 Dt/Te and g 5 Dt/Ty, then g 5 4b/5aDx2 and
the boundary of the stability region is given by the
hyperbolic function

25
2 2 2 2g 5 10j j k Dx 2 16 .@1 24

The stability region of the 2D equations, shown in Fig.
2, is similar.

APPENDIX C

VP Model Adjustment to Imposed Forcing

The VP adjustment time illustrated in Fig. 6 for time
steps of 6 h or more may be estimated as follows. For
large time steps, the acceleration term may be neglected,
and the transient iterates of the resulting numerical
scheme approximate the transition to steady state. That
is, we integrate (54) over [x, L/2] and take advantage
of the problem’s symmetry about x 5 L/2 to produce
the relation

]u 4 L
z 5 t 2 x .1 2]x 5 2

The transition to steady state is then governed by the
associated iterative scheme,

GP9/z if z . zmax max

n11 n]u ]u
5 G if z , z , z (C1)min max) )]x ]x5

GP9/z if z , z ,min min

where P9 5 P/ 5, (55) has been incorporated for z andÏ

4t L
G 5 2 x . (C2)1 22Ï5P

Thus, the upper and lower bounds imposed on z now
limit ]u/]x. The iteration begins with u 5 0 and z 5
zmax for all x. Recall that the steady-state solution is
composed of three line segments, the inner section char-
acterized by zmax and the two outer sections by zmin. In
the inner section, z will remain equal to zmax, but in the
outer regions, z, given by (55), will change from zmax
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to zmin. Equivalently, z]u/]xz will change from z]u/]xzmax

to z]u/]xzmin, under the iteration (C1). Let k be the num-
ber of iterations for this change to occur; then

]u ]u
kzGz 5 .) ) ) )]x ]x

min max

In general, k will be a function of x. For this test case,
z]u/]xzmax 5 2.2 3 1026 and z]u/]xzmin 5 1.8 3 1029 (for
P 5 2 3 106) so that

3ln1.2 3 10
k 5 , (C3)

lnzGz

illustrated in Fig. C1. This formula is valid only in
the outer regions and fails at the break points, where
zGz 5 1:

Ï5PL
x 5 6 .

2 4t

Here, k is largest for the grid points nearest the inner
region; this analysis suggests that approximately 140
iterations are needed for the solution to reach steady
state, in good agreement with Fig. 6.
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