! +-======-+ ! Copyright (c) 2003-2018 United States Government as represented by ! the Admistrator of the National Aeronautics and Space Administration. ! All Rights Reserved. ! ! THIS OPEN SOURCE AGREEMENT ("AGREEMENT") DEFINES THE RIGHTS OF USE, ! REPRODUCTION, DISTRIBUTION, MODIFICATION AND REDISTRIBUTION OF CERTAIN ! COMPUTER SOFTWARE ORIGINALLY RELEASED BY THE UNITED STATES GOVERNMENT AS ! REPRESENTED BY THE GOVERNMENT AGENCY LISTED BELOW ("GOVERNMENT AGENCY"). ! THE UNITED STATES GOVERNMENT, AS REPRESENTED BY GOVERNMENT AGENCY, IS AN ! INTENDED THIRD-PARTY BENEFICIARY OF ALL SUBSEQUENT DISTRIBUTIONS OR ! REDISTRIBUTIONS OF THE SUBJECT SOFTWARE. ANYONE WHO USES, REPRODUCES, ! DISTRIBUTES, MODIFIES OR REDISTRIBUTES THE SUBJECT SOFTWARE, AS DEFINED ! HEREIN, OR ANY PART THEREOF, IS, BY THAT ACTION, ACCEPTING IN FULL THE ! RESPONSIBILITIES AND OBLIGATIONS CONTAINED IN THIS AGREEMENT. ! ! Government Agency: National Aeronautics and Space Administration ! Government Agency Original Software Designation: GSC-15354-1 ! Government Agency Original Software Title: GEOS-5 GCM Modeling Software ! User Registration Requested. Please Visit http://opensource.gsfc.nasa.gov ! Government Agency Point of Contact for Original Software: ! Dale Hithon, SRA Assistant, (301) 286-2691 ! ! +-======-+ module GEOS_GmapMod !implicit none private public gmap interface gmap; module procedure & gmap4_ end interface contains !****6***0*********0*********0*********0*********0*********0**********72 subroutine gmap4_(im, jm, nq, akap, & km, pk3d_m, pe3d_m, u_m, v_m, pt_m, q_m, & kn, pk3d_n, pe3d_n, u_n, v_n, pt_n, q_n ) !****6***0*********0*********0*********0*********0*********0**********72 implicit none integer im, jm integer km, kn, nq ! Input: ! original data km-level real u_m(im,jm,km) real v_m(im,jm,km) real pt_m(im,jm,km) real q_m(im,jm,km,nq) real pk3d_m(im,jm,km+1) real pe3d_m(im,jm,km+1) real pk3d_n(im,jm,kn+1) real pe3d_n(im,jm,kn+1) ! Output: ! New data (kn-level) real u_n(im,jm,kn) real v_n(im,jm,kn) real pt_n(im,jm,kn) real q_n(im,jm,kn,nq) ! local (private) integer i, j, k, n, ic real pe1(im,km+1) ,pe2(im,kn+1) real pk1(im,km+1) ,pk2(im,kn+1) real dp1(im,km) ,dp2(im,kn) real u1(im,km) , u2(im,kn) real v1(im,km) , v2(im,kn) real t1(im,km) , t2(im,kn) real q1(im,km,nq), q2(im,kn,nq) real ptop real akap real ple, pek, dak, bkh real undef real big parameter ( undef = 1.e15 ) parameter ( big = 1.e10 ) #if (openmp) !$omp parallel do !$omp& default (shared) !$omp& private (i,j,k,pe1,pe2,pk1,pk2,dp1,dp2,u1,v1,t1,q1) !$omp& private (u2,v2,t2,q2) #endif do 2000 j=1,jm ! Copy original data to local 2D arrays. do k=1,km+1 do i=1,im pe1(i,k) = pe3d_m(i,j,k) pk1(i,k) = pk3d_m(i,j,k) enddo enddo do k=1,kn+1 do i=1,im pe2(i,k) = pe3d_n(i,j,k) pk2(i,k) = pk3d_n(i,j,k) enddo enddo do k=1,km do i=1,im dp1(i,k) = pk1(i,k+1)-pk1(i,k) u1(i,k) = u_m(i,j,k) v1(i,k) = v_m(i,j,k) t1(i,k) = pt_m(i,j,k) enddo enddo do n=1,nq do k=1,km do i=1,im q1(i,k,n) = q_m(i,j,k,n) enddo enddo enddo do k=1,kn do i=1,im dp2(i,k) = pk2(i,k+1)-pk2(i,k) enddo enddo ! map pt ! ------ call mappm_ ( km, pk1, dp1, t1, kn, pk2, dp2, t2, im, 1, 7 ) do k=1,km do i=1,im dp1(i,k) = pe1(i,k+1)-pe1(i,k) enddo enddo do k=1,kn do i=1,im dp2(i,k) = pe2(i,k+1)-pe2(i,k) enddo enddo ! map u,v,q,oz ! ------------ do n=1,nq call mappm_ ( km, pe1, dp1, q1(1,1,n), kn, pe2, dp2, q2(1,1,n), im, 0, 7 ) enddo call mappm_ ( km, pe1, dp1, u1, kn, pe2, dp2, u2, im, -1, 7 ) call mappm_ ( km, pe1, dp1, v1, kn, pe2, dp2, v2, im, -1, 7 ) do k=1,kn do i=1,im u_n(i,j,k) = u2(i,k) v_n(i,j,k) = v2(i,k) pt_n(i,j,k) = t2(i,k) enddo enddo do n=1,nq do k=1,kn do i=1,im q_n(i,j,k,n) = q2(i,k,n) enddo enddo enddo 2000 continue return end subroutine gmap4_ !****6***0*********0*********0*********0*********0*********0**********72 subroutine mappm_(km, pe1, dp1, q1, kn, pe2, dp2, q2, im, iv, kord) !****6***0*********0*********0*********0*********0*********0**********72 ! IV = 0: constituents ! IV = 1: potential temp ! IV =-1: winds ! ! Mass flux preserving mapping: q1(im,km) -> q2(im,kn) ! ! pe1: pressure at layer edges (from model top to bottom surface) ! in the original vertical coordinate ! pe2: pressure at layer edges (from model top to bottom surface) ! in the new vertical coordinate parameter (kmax = 200) parameter (R3 = 1./3., R23 = 2./3.) real dp1(im,km), dp2(im,kn), & q1(im,km), q2(im,kn), & pe1(im,km+1), pe2(im,kn+1) integer kord ! local work arrays real a4(4,im,km) do k=1,km do i=1,im a4(1,i,k) = q1(i,k) enddo enddo call ppm2m_(a4, dp1, im, km, iv, kord) ! Lowest layer: constant distribution do i=1, im a4(2,i,km) = q1(i,km) a4(3,i,km) = q1(i,km) a4(4,i,km) = 0. enddo do 5555 i=1,im k0 = 1 do 555 k=1,kn if(pe2(i,k+1) .le. pe1(i,1)) then ! Entire grid above old ptop q2(i,k) = a4(2,i,1) elseif(pe2(i,k) .ge. pe1(i,km+1)) then ! Entire grid below old ps q2(i,k) = a4(3,i,km) elseif(pe2(i,k ) .lt. pe1(i,1) .and. & pe2(i,k+1) .gt. pe1(i,1)) then ! Part of the grid above ptop q2(i,k) = a4(1,i,1) else do 45 L=k0,km ! locate the top edge at pe2(i,k) if( pe2(i,k) .ge. pe1(i,L) .and. & pe2(i,k) .le. pe1(i,L+1) ) then k0 = L PL = (pe2(i,k)-pe1(i,L)) / dp1(i,L) if(pe2(i,k+1) .le. pe1(i,L+1)) then ! entire new grid is within the original grid PR = (pe2(i,k+1)-pe1(i,L)) / dp1(i,L) TT = R3*(PR*(PR+PL)+PL**2) q2(i,k) = a4(2,i,L) + 0.5*(a4(4,i,L)+a4(3,i,L) & - a4(2,i,L))*(PR+PL) - a4(4,i,L)*TT goto 555 else ! Fractional area... delp = pe1(i,L+1) - pe2(i,k) TT = R3*(1.+PL*(1.+PL)) qsum = delp*(a4(2,i,L)+0.5*(a4(4,i,L)+ & a4(3,i,L)-a4(2,i,L))*(1.+PL)-a4(4,i,L)*TT) dpsum = delp k1 = L + 1 goto 111 endif endif 45 continue 111 continue do 55 L=k1,km if( pe2(i,k+1) .gt. pe1(i,L+1) ) then ! Whole layer.. qsum = qsum + dp1(i,L)*q1(i,L) dpsum = dpsum + dp1(i,L) else delp = pe2(i,k+1)-pe1(i,L) esl = delp / dp1(i,L) qsum = qsum + delp * (a4(2,i,L)+0.5*esl* & (a4(3,i,L)-a4(2,i,L)+a4(4,i,L)*(1.-r23*esl)) ) dpsum = dpsum + delp k0 = L goto 123 endif 55 continue delp = pe2(i,k+1) - pe1(i,km+1) if(delp .gt. 0.) then ! Extended below old ps qsum = qsum + delp * a4(3,i,km) dpsum = dpsum + delp endif 123 q2(i,k) = qsum / dpsum endif 555 continue 5555 continue return end subroutine mappm_ !****6***0*********0*********0*********0*********0*********0**********72 subroutine ppm2m_(a4,delp,im,km,iv,kord) !****6***0*********0*********0*********0*********0*********0**********72 ! iv = 0: positive definite scalars ! iv = 1: others ! iv =-1: winds implicit none integer im, km, lmt, iv integer kord integer i, k, km1 real a4(4,im,km), delp(im,km) ! local arrays. real dc(im,km),delq(im,km) real h2(im,km) real a1, a2, a3, b2, c1, c2, c3, d1, d2, f1, f2, f3, f4 real s1, s2, s3, s4, ss3, s32, s34, s42, sc real qmax, qmin, cmax, cmin real dm, qm, dq, tmp ! Local scalars: real qmp real lac km1 = km - 1 do 500 k=2,km do 500 i=1,im delq(i,k-1) = a4(1,i,k) - a4(1,i,k-1) 500 a4(4,i,k ) = delp(i,k-1) + delp(i,k) do 1220 k=2,km1 do 1220 i=1,im c1 = (delp(i,k-1)+0.5*delp(i,k))/a4(4,i,k+1) c2 = (delp(i,k+1)+0.5*delp(i,k))/a4(4,i,k) tmp = delp(i,k)*(c1*delq(i,k) + c2*delq(i,k-1)) / & (a4(4,i,k)+delp(i,k+1)) qmax = max(a4(1,i,k-1),a4(1,i,k),a4(1,i,k+1)) - a4(1,i,k) qmin = a4(1,i,k) - min(a4(1,i,k-1),a4(1,i,k),a4(1,i,k+1)) dc(i,k) = sign(min(abs(tmp),qmax,qmin), tmp) 1220 continue !****6***0*********0*********0*********0*********0*********0**********72 ! 4th order interpolation of the provisional cell edge value !****6***0*********0*********0*********0*********0*********0**********72 do 12 k=3,km1 do 12 i=1,im c1 = delq(i,k-1)*delp(i,k-1) / a4(4,i,k) a1 = a4(4,i,k-1) / (a4(4,i,k) + delp(i,k-1)) a2 = a4(4,i,k+1) / (a4(4,i,k) + delp(i,k)) a4(2,i,k) = a4(1,i,k-1) + c1 + 2./(a4(4,i,k-1)+a4(4,i,k+1)) * & ( delp(i,k)*(c1*(a1 - a2)+a2*dc(i,k-1)) - & delp(i,k-1)*a1*dc(i,k ) ) 12 continue ! Area preserving cubic with 2nd deriv. = 0 at the boundaries ! Top do i=1,im d1 = delp(i,1) d2 = delp(i,2) qm = (d2*a4(1,i,1)+d1*a4(1,i,2)) / (d1+d2) dq = 2.*(a4(1,i,2)-a4(1,i,1)) / (d1+d2) c1 = 4.*(a4(2,i,3)-qm-d2*dq) / ( d2*(2.*d2*d2+d1*(d2+3.*d1)) ) c3 = dq - 0.5*c1*(d2*(5.*d1+d2)-3.*d1**2) a4(2,i,2) = qm - 0.25*c1*d1*d2*(d2+3.*d1) a4(2,i,1) = d1*(2.*c1*d1**2-c3) + a4(2,i,2) dc(i,1) = a4(1,i,1) - a4(2,i,1) ! No over- and undershoot condition cmax = max(a4(1,i,1), a4(1,i,2)) cmin = min(a4(1,i,1), a4(1,i,2)) a4(2,i,2) = max(cmin,a4(2,i,2)) a4(2,i,2) = min(cmax,a4(2,i,2)) enddo if(iv == 0) then do i=1,im a4(2,i,1) = max(0.,a4(2,i,1)) a4(2,i,2) = max(0.,a4(2,i,2)) enddo elseif(iv == -1) then do i=1,im if( a4(2,i,1)*a4(1,i,1) <= 0. ) a4(2,i,1) = 0. enddo endif !****6***0*********0*********0*********0*********0*********0**********72 ! Bottom ! Area preserving cubic with 2nd deriv. = 0 at the surface do 15 i=1,im d1 = delp(i,km) d2 = delp(i,km1) qm = (d2*a4(1,i,km)+d1*a4(1,i,km1)) / (d1+d2) dq = 2.*(a4(1,i,km1)-a4(1,i,km)) / (d1+d2) c1 = (a4(2,i,km1)-qm-d2*dq) / (d2*(2.*d2*d2+d1*(d2+3.*d1))) c3 = dq - 2.0*c1*(d2*(5.*d1+d2)-3.*d1**2) a4(2,i,km) = qm - c1*d1*d2*(d2+3.*d1) a4(3,i,km) = d1*(8.*c1*d1**2-c3) + a4(2,i,km) dc(i,km) = a4(3,i,km) - a4(1,i,km) !****6***0*********0*********0*********0*********0*********0**********72 ! No over- and undershoot condition cmax = max(a4(1,i,km), a4(1,i,km1)) cmin = min(a4(1,i,km), a4(1,i,km1)) a4(2,i,km) = max(cmin,a4(2,i,km)) a4(2,i,km) = min(cmax,a4(2,i,km)) !****6***0*********0*********0*********0*********0*********0**********72 15 continue if(iv .eq. 0) then do i=1,im a4(2,i,km) = max(0.,a4(2,i,km)) a4(3,i,km) = max(0.,a4(3,i,km)) enddo endif do 20 k=1,km1 do 20 i=1,im a4(3,i,k) = a4(2,i,k+1) 20 continue ! ! f(s) = AL + s*[(AR-AL) + A6*(1-s)] ( 0 <= s <= 1 ) ! ! Top 2 and bottom 2 layers always use monotonic mapping do k=1,2 do i=1,im a4(4,i,k) = 3.*(2.*a4(1,i,k) - (a4(2,i,k)+a4(3,i,k))) enddo call kmppm_(dc(1,k),a4(1,1,k),im, 0) enddo if(kord == 7) then !****6***0*********0*********0*********0*********0*********0**********72 ! Huynh's 2nd constraint !****6***0*********0*********0*********0*********0*********0**********72 do k=2, km1 do i=1,im h2(i,k) = delq(i,k) - delq(i,k-1) enddo enddo do 4000 k=3, km-2 do 3000 i=1, im ! Right edges qmp = a4(1,i,k) + 2.0*delq(i,k-1) lac = a4(1,i,k) + 1.5*h2(i,k-1) + 0.5*delq(i,k-1) qmin = min(a4(1,i,k), qmp, lac) qmax = max(a4(1,i,k), qmp, lac) a4(3,i,k) = min(max(a4(3,i,k), qmin), qmax) ! Left edges qmp = a4(1,i,k) - 2.0*delq(i,k) lac = a4(1,i,k) + 1.5*h2(i,k+1) - 0.5*delq(i,k) qmin = min(a4(1,i,k), qmp, lac) qmax = max(a4(1,i,k), qmp, lac) a4(2,i,k) = min(max(a4(2,i,k), qmin), qmax) ! Recompute A6 a4(4,i,k) = 3.*(2.*a4(1,i,k) - (a4(2,i,k)+a4(3,i,k))) 3000 continue ! Additional constraint to prevent negatives if (iv == 0) then call kmppm_(dc(1,k),a4(1,1,k),im, 2) endif 4000 continue else lmt = kord - 3 lmt = max(0, lmt) if (iv .eq. 0) lmt = min(2, lmt) do k=3, km-2 do i=1,im a4(4,i,k) = 3.*(2.*a4(1,i,k) - (a4(2,i,k)+a4(3,i,k))) enddo call kmppm_(dc(1,k),a4(1,1,k),im, lmt) enddo endif do 5000 k=km1,km do i=1,im a4(4,i,k) = 3.*(2.*a4(1,i,k) - (a4(2,i,k)+a4(3,i,k))) enddo call kmppm_(dc(1,k),a4(1,1,k),im, 0) 5000 continue return end subroutine ppm2m_ !****6***0*********0*********0*********0*********0*********0**********72 subroutine kmppm_(dm, a4, km, lmt) !****6***0*********0*********0*********0*********0*********0**********72 implicit none real r12 parameter (r12 = 1./12.) integer km, lmt integer i real a4(4,km),dm(km) real da1, da2, a6da real fmin real qmp if (lmt .eq. 3) return ! Full constraint if(lmt .eq. 0) then do 100 i=1,km if(dm(i) .eq. 0.) then a4(2,i) = a4(1,i) a4(3,i) = a4(1,i) a4(4,i) = 0. else da1 = a4(3,i) - a4(2,i) da2 = da1**2 a6da = a4(4,i)*da1 if(a6da .lt. -da2) then a4(4,i) = 3.*(a4(2,i)-a4(1,i)) a4(3,i) = a4(2,i) - a4(4,i) elseif(a6da .gt. da2) then a4(4,i) = 3.*(a4(3,i)-a4(1,i)) a4(2,i) = a4(3,i) - a4(4,i) endif endif 100 continue elseif (lmt .eq. 2) then ! Positive definite ! Positive definite constraint do 250 i=1,km if(abs(a4(3,i)-a4(2,i)) .ge. -a4(4,i)) go to 250 fmin = a4(1,i)+0.25*(a4(3,i)-a4(2,i))**2/a4(4,i)+a4(4,i)*r12 if(fmin.ge.0.) go to 250 if(a4(1,i).lt.a4(3,i) .and. a4(1,i).lt.a4(2,i)) then a4(3,i) = a4(1,i) a4(2,i) = a4(1,i) a4(4,i) = 0. elseif(a4(3,i) .gt. a4(2,i)) then a4(4,i) = 3.*(a4(2,i)-a4(1,i)) a4(3,i) = a4(2,i) - a4(4,i) else a4(4,i) = 3.*(a4(3,i)-a4(1,i)) a4(2,i) = a4(3,i) - a4(4,i) endif 250 continue elseif (lmt == 1) then ! Improved full monotonicity constraint (Lin) ! Note: no need to provide first guess of A6 <-- a4(4,i) do i=1, km qmp = 2.*dm(i) a4(2,i) = a4(1,i)-sign(min(abs(qmp),abs(a4(2,i)-a4(1,i))), qmp) a4(3,i) = a4(1,i)+sign(min(abs(qmp),abs(a4(3,i)-a4(1,i))), qmp) a4(4,i) = 3.*( 2.*a4(1,i) - (a4(2,i)+a4(3,i)) ) enddo endif return end subroutine kmppm_ end module GEOS_GmapMod