C +-======-+ C Copyright (c) 2003-2007 United States Government as represented by C the Admistrator of the National Aeronautics and Space Administration. C All Rights Reserved. C C THIS OPEN SOURCE AGREEMENT ("AGREEMENT") DEFINES THE RIGHTS OF USE, C REPRODUCTION, DISTRIBUTION, MODIFICATION AND REDISTRIBUTION OF CERTAIN C COMPUTER SOFTWARE ORIGINALLY RELEASED BY THE UNITED STATES GOVERNMENT AS C REPRESENTED BY THE GOVERNMENT AGENCY LISTED BELOW ("GOVERNMENT AGENCY"). C THE UNITED STATES GOVERNMENT, AS REPRESENTED BY GOVERNMENT AGENCY, IS AN C INTENDED THIRD-PARTY BENEFICIARY OF ALL SUBSEQUENT DISTRIBUTIONS OR C REDISTRIBUTIONS OF THE SUBJECT SOFTWARE. ANYONE WHO USES, REPRODUCES, C DISTRIBUTES, MODIFIES OR REDISTRIBUTES THE SUBJECT SOFTWARE, AS DEFINED C HEREIN, OR ANY PART THEREOF, IS, BY THAT ACTION, ACCEPTING IN FULL THE C RESPONSIBILITIES AND OBLIGATIONS CONTAINED IN THIS AGREEMENT. C C Government Agency: National Aeronautics and Space Administration C Government Agency Original Software Designation: GSC-15354-1 C Government Agency Original Software Title: GEOS-5 GCM Modeling Software C User Registration Requested. Please Visit http://opensource.gsfc.nasa.gov C Government Agency Point of Contact for Original Software: C Dale Hithon, SRA Assistant, (301) 286-2691 C C +-======-+ subroutine atod ( qa,qd,im,jm,lm,itype ) C ****************************************************************** C **** **** C **** This program converts 'A' gridded data **** C **** to 'D' gridded data. **** C **** **** C **** The D-Grid Triplet is defined as: **** C **** **** C **** u(i,j+1) **** C **** | **** C **** v(i,j)---delp(i,j)---v(i+1,j) **** C **** | **** C **** u(i,j) **** C **** **** C **** Thus, v is shifted left (westward), **** C **** u is shifted down (southward) **** C **** **** C **** An FFT shift transformation is made in x for itype = 1 **** C **** An FFT shift transformation is made in y for itype = 2 **** C **** **** C ****************************************************************** real qa (im,jm,lm) real qd (im,jm,lm) real qax ( im+2 ,lm) real cx (2*(im+2),lm) real qay ( 2*jm ,lm) real cy (2*(2*jm),lm) real cosx (im/2), sinx(im/2) real cosy (jm) , siny(jm) real trigx(3*(im+1)) real trigy(3*(2*jm)) integer IFX (100) integer IFY (100) jmm1 = jm-1 jp = 2*jmm1 imh = im/2 pi = 4.0*atan(1.0) dx = 2*pi/im dy = pi/jmm1 C ********************************************************* C **** shift left (-dx/2) **** C ********************************************************* if (itype.eq.1) then call fftfax (im,ifx,trigx) do k=1,imh thx = k*dx*0.5 cosx(k) = cos(thx) sinx(k) = sin(thx) enddo do j=1,jm do L=1,lm do i=1,im qax(i,L) = qa(i,j,L) enddo enddo call rfftmlt (qax,cx,trigx,ifx,1 ,im+2,im,lm,-1) do L=1,lm do k=1,imh kr = 2*k+1 ki = 2*k+2 crprime = qax(kr,L)*cosx(k) + qax(ki,L)*sinx(k) ciprime = qax(ki,L)*cosx(k) - qax(kr,L)*sinx(k) qax(kr,L) = crprime qax(ki,L) = ciprime enddo enddo call rfftmlt (qax,cx,trigx,ifx,1 ,im+2,im,lm, 1) do L=1,lm do i=1,im qd(i,j,L) = qax(i,L) enddo enddo enddo endif C ********************************************************* C **** shift down (-dy/2) **** C ********************************************************* if (itype.eq.2) then call fftfax (jp,ify,trigy) do L=1,jmm1 thy = L*dy*0.5 cosy(L) = cos(thy) siny(L) = sin(thy) enddo do i=1,imh do L=1,lm do j=1,jmm1 qay(j,L) = qa(i,j+1,L) qay(j+jmm1,L) = -qa(i+imh,jm-j,L) enddo enddo call rfftmlt (qay,cy,trigy,ify,1 ,jp+2,jp,lm,-1) do L=1,lm do k=1,jmm1 kr = 2*k+1 ki = 2*k+2 crprime = qay(kr,L)*cosy(k) + qay(ki,L)*siny(k) ciprime = qay(ki,L)*cosy(k) - qay(kr,L)*siny(k) qay(kr,L) = crprime qay(ki,L) = ciprime enddo enddo call rfftmlt (qay,cy,trigy,ify,1 ,jp+2,jp,lm, 1) do L=1,lm do j=1,jmm1 qd(i,j+1,L) = qay(j,L) qd(i+imh,jm-j+1,L) = -qay(j+jmm1,L) enddo enddo enddo endif return end subroutine dtoa ( qd,qa,im,jm,lm,itype ) C ****************************************************************** C **** **** C **** This program converts 'D' gridded data **** C **** to 'A' gridded data. **** C **** **** C **** The D-Grid Triplet is defined as: **** C **** **** C **** u(i,j+1) **** C **** | **** C **** v(i,j)---delp(i,j)---v(i+1,j) **** C **** | **** C **** u(i,j) **** C **** **** C **** Thus, v is shifted right (eastward), **** C **** u is shifted up (northward) **** C **** **** C **** An FFT shift transformation is made in x for itype = 1 **** C **** An FFT shift transformation is made in y for itype = 2 **** C **** **** C ****************************************************************** real qa (im,jm,lm) real qd (im,jm,lm) real qax ( im+2 ,lm) real cx (2*(im+2),lm) real qay ( 2*jm ,lm) real cy (2*(2*jm),lm) real cosx (im/2), sinx(im/2) real cosy (jm) , siny(jm) real trigx(3*(im+1)) real trigy(3*(2*jm)) integer IFX (100) integer IFY (100) jmm1 = jm-1 jp = 2*jmm1 imh = im/2 pi = 4.0*atan(1.0) dx = 2*pi/im dy = pi/jmm1 C ********************************************************* C **** shift right (dx/2) **** C ********************************************************* if (itype.eq.1) then call fftfax (im,ifx,trigx) do k=1,imh thx = k*dx*0.5 cosx(k) = cos(thx) sinx(k) = sin(thx) enddo do j=1,jm do L=1,lm do i=1,im qax(i,L) = qd(i,j,L) enddo enddo call rfftmlt (qax,cx,trigx,ifx,1 ,im+2,im,lm,-1) do L=1,lm do k=1,imh kr = 2*k+1 ki = 2*k+2 crprime = qax(kr,L)*cosx(k) - qax(ki,L)*sinx(k) ciprime = qax(ki,L)*cosx(k) + qax(kr,L)*sinx(k) qax(kr,L) = crprime qax(ki,L) = ciprime enddo enddo call rfftmlt (qax,cx,trigx,ifx,1 ,im+2,im,lm, 1) do L=1,lm do i=1,im qa(i,j,L) = qax(i,L) enddo enddo enddo endif C ********************************************************* C **** shift up (dy/2) **** C ********************************************************* if (itype.eq.2) then call fftfax (jp,ify,trigy) do L=1,jmm1 thy = L*dy*0.5 cosy(L) = cos(thy) siny(L) = sin(thy) enddo do i=1,imh do L=1,lm do j=1,jmm1 qay(j,L) = qd(i,j+1,L) qay(j+jmm1,L) = -qd(i+imh,jm-j+1,L) enddo enddo call rfftmlt (qay,cy,trigy,ify,1 ,jp+2,jp,lm,-1) do L=1,lm do k=1,jmm1 kr = 2*k+1 ki = 2*k+2 crprime = qay(kr,L)*cosy(k) - qay(ki,L)*siny(k) ciprime = qay(ki,L)*cosy(k) + qay(kr,L)*siny(k) qay(kr,L) = crprime qay(ki,L) = ciprime enddo enddo call rfftmlt (qay,cy,trigy,ify,1 ,jp+2,jp,lm, 1) do L=1,lm do j=1,jmm1 qa(i,j+1,L) = qay(j,L) qa(i+imh,jm-j,L) = -qay(j+jmm1,L) enddo enddo enddo do L=1,lm do i=1,imh qa(i+imh,jm,L) = -qa(i,jm,L) qa(i,1,L) = -qa(i+imh,1,L) enddo enddo endif return end subroutine rfftmlt (a,work,trigs,ifax,inc,jump,n,lot,isign) integer INC, JUMP, N, LOT, ISIGN real(kind=KIND(1.0)) A(N),WORK(N),TRIGS(N) integer IFAX(*) ! ! SUBROUTINE "FFT991" - MULTIPLE REAL/HALF-COMPLEX PERIODIC ! FAST FOURIER TRANSFORM ! ! SAME AS FFT99 EXCEPT THAT ORDERING OF DATA CORRESPONDS TO ! THAT IN MRFFT2 ! ! PROCEDURE USED TO CONVERT TO HALF-LENGTH COMPLEX TRANSFORM ! IS GIVEN BY COOLEY, LEWIS AND WELCH (J. SOUND VIB., VOL. 12 ! (1970), 315-337) ! ! A IS THE ARRAY CONTAINING INPUT AND OUTPUT DATA ! WORK IS AN AREA OF SIZE (N+1)*LOT ! TRIGS IS A PREVIOUSLY PREPARED LIST OF TRIG FUNCTION VALUES ! IFAX IS A PREVIOUSLY PREPARED LIST OF FACTORS OF N/2 ! INC IS THE INCREMENT WITHIN EACH DATA 'VECTOR' ! (E.G. INC=1 FOR CONSECUTIVELY STORED DATA) ! JUMP IS THE INCREMENT BETWEEN THE START OF EACH DATA VECTOR ! N IS THE LENGTH OF THE DATA VECTORS ! LOT IS THE NUMBER OF DATA VECTORS ! ISIGN = +1 FOR TRANSFORM FROM SPECTRAL TO GRIDPOINT ! = -1 FOR TRANSFORM FROM GRIDPOINT TO SPECTRAL ! ! ORDERING OF COEFFICIENTS: ! A(0),B(0),A(1),B(1),A(2),B(2),...,A(N/2),B(N/2) ! WHERE B(0)=B(N/2)=0; (N+2) LOCATIONS REQUIRED ! ! ORDERING OF DATA: ! X(0),X(1),X(2),...,X(N-1) ! ! VECTORIZATION IS ACHIEVED ON CRAY BY DOING THE TRANSFORMS IN ! PARALLEL ! ! *** N.B. N IS ASSUMED TO BE AN EVEN NUMBER ! ! DEFINITION OF TRANSFORMS: ! ------------------------- ! ! ISIGN=+1: X(J)=SUM(K=0,...,N-1)(C(K)*EXP(2*I*J*K*PI/N)) ! WHERE C(K)=A(K)+I*B(K) AND C(N-K)=A(K)-I*B(K) ! ! ISIGN=-1: A(K)=(1/N)*SUM(J=0,...,N-1)(X(J)*COS(2*J*K*PI/N)) ! B(K)=-(1/N)*SUM(J=0,...,N-1)(X(J)*SIN(2*J*K*PI/N)) ! ! THE FOLLOWING CALL IS FOR MONITORING LIBRARY USE AT NCAR ! CALL Q8QST4 ( 4HXLIB, 6HFFT99F, 6HFFT991, 10HVERSION 01) !FPP$ NOVECTOR R integer NFAX, NH, NX, INK integer I, J, IBASE, JBASE, L, IGO, IA, LA, K, M, IB NFAX=IFAX(1) NX=N+1 NH=N/2 INK=INC+INC IF (ISIGN.EQ.+1) GO TO 30 ! ! IF NECESSARY, TRANSFER DATA TO WORK AREA IGO=50 IF (MOD(NFAX,2).EQ.1) GOTO 40 IBASE=1 JBASE=1 DO 20 L=1,LOT I=IBASE J=JBASE !DIR$ IVDEP DO 10 M=1,N WORK(J)=A(I) I=I+INC J=J+1 10 CONTINUE IBASE=IBASE+JUMP JBASE=JBASE+NX 20 CONTINUE ! IGO=60 GO TO 40 ! ! PREPROCESSING (ISIGN=+1) ! ------------------------ ! 30 CONTINUE CALL FFT99A(A,WORK,TRIGS,INC,JUMP,N,LOT) IGO=60 ! ! COMPLEX TRANSFORM ! ----------------- ! 40 CONTINUE IA=1 LA=1 DO 80 K=1,NFAX IF (IGO.EQ.60) GO TO 60 50 CONTINUE CALL VPASSM(A(IA),A(IA+INC),WORK(1),WORK(2),TRIGS, * INK,2,JUMP,NX,LOT,NH,IFAX(K+1),LA) IGO=60 GO TO 70 60 CONTINUE CALL VPASSM(WORK(1),WORK(2),A(IA),A(IA+INC),TRIGS, * 2,INK,NX,JUMP,LOT,NH,IFAX(K+1),LA) IGO=50 70 CONTINUE LA=LA*IFAX(K+1) 80 CONTINUE ! IF (ISIGN.EQ.-1) GO TO 130 ! ! IF NECESSARY, TRANSFER DATA FROM WORK AREA IF (MOD(NFAX,2).EQ.1) GO TO 110 IBASE=1 JBASE=1 DO 100 L=1,LOT I=IBASE J=JBASE !DIR$ IVDEP DO 90 M=1,N A(J)=WORK(I) I=I+1 J=J+INC 90 CONTINUE IBASE=IBASE+NX JBASE=JBASE+JUMP 100 CONTINUE ! ! FILL IN ZEROS AT END 110 CONTINUE IB=N*INC+1 !DIR$ IVDEP DO 120 L=1,LOT A(IB)=0.0 A(IB+INC)=0.0 IB=IB+JUMP 120 CONTINUE GO TO 140 ! ! POSTPROCESSING (ISIGN=-1): ! -------------------------- ! 130 CONTINUE CALL FFT99B(WORK,A,TRIGS,INC,JUMP,N,LOT) ! 140 CONTINUE RETURN END subroutine fftfax (n,ifax,trigs) integer IFAX(13) integer N REAL(kind=KIND(1.0)) TRIGS(*) ! ! MODE 3 IS USED FOR REAL/HALF-COMPLEX TRANSFORMS. IT IS POSSIBLE ! TO DO COMPLEX/COMPLEX TRANSFORMS WITH OTHER VALUES OF MODE, BUT ! DOCUMENTATION OF THE DETAILS WERE NOT AVAILABLE WHEN THIS ROUTINE ! WAS WRITTEN. ! integer I, MODE DATA MODE /3/ !FPP$ NOVECTOR R CALL FAX (IFAX, N, MODE) I = IFAX(1) IF (IFAX(I+1) .GT. 5 .OR. N .LE. 4) IFAX(1) = -99 IF (IFAX(1) .LE. 0 ) WRITE(6,FMT="(//5X, ' FFTFAX -- INVALID N =', I5,/)") N IF (IFAX(1) .LE. 0 ) STOP 999 CALL FFTRIG (TRIGS, N, MODE) RETURN END subroutine fft99a (a,work,trigs,inc,jump,n,lot) integer inc, jump, N, lot real(kind=KIND(1.0)) A(N),WORK(N) REAL(kind=KIND(1.0)) TRIGS(N) ! ! SUBROUTINE FFT99A - PREPROCESSING STEP FOR FFT99, ISIGN=+1 ! (SPECTRAL TO GRIDPOINT TRANSFORM) ! !FPP$ NOVECTOR R integer NH, NX, INK, IA, IB, JA, JB, K, L integer IABASE, IBBASE, JABASE, JBBASE real(kind=KIND(1.0)) C, S NH=N/2 NX=N+1 INK=INC+INC ! ! A(0) AND A(N/2) IA=1 IB=N*INC+1 JA=1 JB=2 !DIR$ IVDEP DO 10 L=1,LOT WORK(JA)=A(IA)+A(IB) WORK(JB)=A(IA)-A(IB) IA=IA+JUMP IB=IB+JUMP JA=JA+NX JB=JB+NX 10 CONTINUE ! ! REMAINING WAVENUMBERS IABASE=2*INC+1 IBBASE=(N-2)*INC+1 JABASE=3 JBBASE=N-1 ! DO 30 K=3,NH,2 IA=IABASE IB=IBBASE JA=JABASE JB=JBBASE C=TRIGS(N+K) S=TRIGS(N+K+1) !DIR$ IVDEP DO 20 L=1,LOT WORK(JA)=(A(IA)+A(IB))- * (S*(A(IA)-A(IB))+C*(A(IA+INC)+A(IB+INC))) WORK(JB)=(A(IA)+A(IB))+ * (S*(A(IA)-A(IB))+C*(A(IA+INC)+A(IB+INC))) WORK(JA+1)=(C*(A(IA)-A(IB))-S*(A(IA+INC)+A(IB+INC)))+ * (A(IA+INC)-A(IB+INC)) WORK(JB+1)=(C*(A(IA)-A(IB))-S*(A(IA+INC)+A(IB+INC)))- * (A(IA+INC)-A(IB+INC)) IA=IA+JUMP IB=IB+JUMP JA=JA+NX JB=JB+NX 20 CONTINUE IABASE=IABASE+INK IBBASE=IBBASE-INK JABASE=JABASE+2 JBBASE=JBBASE-2 30 CONTINUE ! IF (IABASE.NE.IBBASE) GO TO 50 ! WAVENUMBER N/4 (IF IT EXISTS) IA=IABASE JA=JABASE !DIR$ IVDEP DO 40 L=1,LOT WORK(JA)=2.0*A(IA) WORK(JA+1)=-2.0*A(IA+INC) IA=IA+JUMP JA=JA+NX 40 CONTINUE ! 50 CONTINUE RETURN END subroutine fft99b (work,a,trigs,inc,jump,n,lot) integer INC, JUMP, N, LOT real(kind=KIND(1.0)) WORK(N),A(N) REAL(kind=KIND(1.0)) TRIGS(N) integer NH, NX, INK, IA, IB, JA, JB, K, L integer IABASE, IBBASE, JABASE, JBBASE real(kind=KIND(1.0)) SCALE real(kind=KIND(1.0)) C, S ! ! SUBROUTINE FFT99B - POSTPROCESSING STEP FOR FFT99, ISIGN=-1 ! (GRIDPOINT TO SPECTRAL TRANSFORM) ! !FPP$ NOVECTOR R NH=N/2 NX=N+1 INK=INC+INC ! ! A(0) AND A(N/2) SCALE=1.0/FLOAT(N) IA=1 IB=2 JA=1 JB=N*INC+1 !DIR$ IVDEP DO 10 L=1,LOT A(JA)=SCALE*(WORK(IA)+WORK(IB)) A(JB)=SCALE*(WORK(IA)-WORK(IB)) A(JA+INC)=0.0 A(JB+INC)=0.0 IA=IA+NX IB=IB+NX JA=JA+JUMP JB=JB+JUMP 10 CONTINUE ! ! REMAINING WAVENUMBERS SCALE=0.5*SCALE IABASE=3 IBBASE=N-1 JABASE=2*INC+1 JBBASE=(N-2)*INC+1 ! DO 30 K=3,NH,2 IA=IABASE IB=IBBASE JA=JABASE JB=JBBASE C=TRIGS(N+K) S=TRIGS(N+K+1) !DIR$ IVDEP DO 20 L=1,LOT A(JA)=SCALE*((WORK(IA)+WORK(IB)) * +(C*(WORK(IA+1)+WORK(IB+1))+S*(WORK(IA)-WORK(IB)))) A(JB)=SCALE*((WORK(IA)+WORK(IB)) * -(C*(WORK(IA+1)+WORK(IB+1))+S*(WORK(IA)-WORK(IB)))) A(JA+INC)=SCALE*((C*(WORK(IA)-WORK(IB))-S*(WORK(IA+1)+WORK(IB+1))) * +(WORK(IB+1)-WORK(IA+1))) A(JB+INC)=SCALE*((C*(WORK(IA)-WORK(IB))-S*(WORK(IA+1)+WORK(IB+1))) * -(WORK(IB+1)-WORK(IA+1))) IA=IA+NX IB=IB+NX JA=JA+JUMP JB=JB+JUMP 20 CONTINUE IABASE=IABASE+2 IBBASE=IBBASE-2 JABASE=JABASE+INK JBBASE=JBBASE-INK 30 CONTINUE ! IF (IABASE.NE.IBBASE) GO TO 50 ! WAVENUMBER N/4 (IF IT EXISTS) IA=IABASE JA=JABASE SCALE=2.0*SCALE !DIR$ IVDEP DO 40 L=1,LOT A(JA)=SCALE*WORK(IA) A(JA+INC)=-SCALE*WORK(IA+1) IA=IA+NX JA=JA+JUMP 40 CONTINUE ! 50 CONTINUE RETURN END subroutine fax (ifax,n,mode) integer IFAX(10) integer N, MODE !FPP$ NOVECTOR R integer NN, K, L, INC, II, ISTOP, ITEM, NFAX, I NN=N IF (IABS(MODE).EQ.1) GO TO 10 IF (IABS(MODE).EQ.8) GO TO 10 NN=N/2 IF ((NN+NN).EQ.N) GO TO 10 IFAX(1)=-99 RETURN 10 K=1 ! TEST FOR FACTORS OF 4 20 IF (MOD(NN,4).NE.0) GO TO 30 K=K+1 IFAX(K)=4 NN=NN/4 IF (NN.EQ.1) GO TO 80 GO TO 20 ! TEST FOR EXTRA FACTOR OF 2 30 IF (MOD(NN,2).NE.0) GO TO 40 K=K+1 IFAX(K)=2 NN=NN/2 IF (NN.EQ.1) GO TO 80 ! TEST FOR FACTORS OF 3 40 IF (MOD(NN,3).NE.0) GO TO 50 K=K+1 IFAX(K)=3 NN=NN/3 IF (NN.EQ.1) GO TO 80 GO TO 40 ! NOW FIND REMAINING FACTORS 50 L=5 INC=2 ! INC ALTERNATELY TAKES ON VALUES 2 AND 4 60 IF (MOD(NN,L).NE.0) GO TO 70 K=K+1 IFAX(K)=L NN=NN/L IF (NN.EQ.1) GO TO 80 GO TO 60 70 L=L+INC INC=6-INC GO TO 60 80 IFAX(1)=K-1 ! IFAX(1) CONTAINS NUMBER OF FACTORS NFAX=IFAX(1) ! SORT FACTORS INTO ASCENDING ORDER IF (NFAX.EQ.1) GO TO 110 DO 100 II=2,NFAX ISTOP=NFAX+2-II DO 90 I=2,ISTOP IF (IFAX(I+1).GE.IFAX(I)) GO TO 90 ITEM=IFAX(I) IFAX(I)=IFAX(I+1) IFAX(I+1)=ITEM 90 CONTINUE 100 CONTINUE 110 CONTINUE RETURN END subroutine fftrig (trigs,n,mode) REAL(kind=KIND(1.0)) TRIGS(*) integer N, MODE !FPP$ NOVECTOR R real(kind=KIND(1.0)) PI integer IMODE, NN, L, I, NH, LA real(kind=KIND(1.0)) DEL, ANGLE PI=2.0*ASIN(1.0) IMODE=IABS(MODE) NN=N IF (IMODE.GT.1.AND.IMODE.LT.6) NN=N/2 DEL=(PI+PI)/FLOAT(NN) L=NN+NN DO 10 I=1,L,2 ANGLE=0.5*FLOAT(I-1)*DEL TRIGS(I)=COS(ANGLE) TRIGS(I+1)=SIN(ANGLE) 10 CONTINUE IF (IMODE.EQ.1) RETURN IF (IMODE.EQ.8) RETURN DEL=0.5*DEL NH=(NN+1)/2 L=NH+NH LA=NN+NN DO 20 I=1,L,2 ANGLE=0.5*FLOAT(I-1)*DEL TRIGS(LA+I)=COS(ANGLE) TRIGS(LA+I+1)=SIN(ANGLE) 20 CONTINUE IF (IMODE.LE.3) RETURN DEL=0.5*DEL LA=LA+NN IF (MODE.EQ.5) GO TO 40 DO 30 I=2,NN ANGLE=FLOAT(I-1)*DEL TRIGS(LA+I)=2.0*SIN(ANGLE) 30 CONTINUE RETURN 40 CONTINUE DEL=0.5*DEL DO 50 I=2,N ANGLE=FLOAT(I-1)*DEL TRIGS(LA+I)=SIN(ANGLE) 50 CONTINUE RETURN END subroutine vpassm (a,b,c,d,trigs,inc1,inc2,inc3,inc4,lot,n,ifac,la) integer INC1,INC2,INC3,INC4,LOT,N,IFAC,LA real(kind=KIND(1.0)) A(N),B(N),C(N),D(N) REAL(kind=KIND(1.0)) TRIGS(N) ! ! SUBROUTINE "VPASSM" - MULTIPLE VERSION OF "VPASSA" ! PERFORMS ONE PASS THROUGH DATA ! AS PART OF MULTIPLE COMPLEX FFT ROUTINE ! A IS FIRST REAL INPUT VECTOR ! B IS FIRST IMAGINARY INPUT VECTOR ! C IS FIRST REAL OUTPUT VECTOR ! D IS FIRST IMAGINARY OUTPUT VECTOR ! TRIGS IS PRECALCULATED TABLE OF SINES & COSINES ! INC1 IS ADDRESSING INCREMENT FOR A AND B ! INC2 IS ADDRESSING INCREMENT FOR C AND D ! INC3 IS ADDRESSING INCREMENT BETWEEN As & Bs ! INC4 IS ADDRESSING INCREMENT BETWEEN Cs & Ds ! LOT IS THE NUMBER OF VECTORS ! N IS LENGTH OF VECTORS ! IFAC IS CURRENT FACTOR OF N ! LA IS PRODUCT OF PREVIOUS FACTORS ! real(kind=KIND(1.0)) SIN36, COS36, SIN72, COS72, SIN60 DATA SIN36/0.587785252292473/,COS36/0.809016994374947/, * SIN72/0.951056516295154/,COS72/0.309016994374947/, * SIN60/0.866025403784437/ integer M, IINK, JINK, JUMP, IBASE, JBASE, IGO, IA, JA, IB, JB integer IC, JC, ID, JD, IE, JE integer I, J, K, L, IJK, LA1, KB, KC, KD, KE real(kind=KIND(1.0)) C1, S1, C2, S2, C3, S3, C4, S4 ! !FPP$ NOVECTOR R M=N/IFAC IINK=M*INC1 JINK=LA*INC2 JUMP=(IFAC-1)*JINK IBASE=0 JBASE=0 IGO=IFAC-1 IF (IGO.GT.4) RETURN GO TO (10,50,90,130),IGO ! ! CODING FOR FACTOR 2 ! 10 IA=1 JA=1 IB=IA+IINK JB=JA+JINK DO 20 L=1,LA I=IBASE J=JBASE !DIR$ IVDEP DO 15 IJK=1,LOT C(JA+J)=A(IA+I)+A(IB+I) D(JA+J)=B(IA+I)+B(IB+I) C(JB+J)=A(IA+I)-A(IB+I) D(JB+J)=B(IA+I)-B(IB+I) I=I+INC3 J=J+INC4 15 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 20 CONTINUE IF (LA.EQ.M) RETURN LA1=LA+1 JBASE=JBASE+JUMP DO 40 K=LA1,M,LA KB=K+K-2 C1=TRIGS(KB+1) S1=TRIGS(KB+2) DO 30 L=1,LA I=IBASE J=JBASE !DIR$ IVDEP DO 25 IJK=1,LOT C(JA+J)=A(IA+I)+A(IB+I) D(JA+J)=B(IA+I)+B(IB+I) C(JB+J)=C1*(A(IA+I)-A(IB+I))-S1*(B(IA+I)-B(IB+I)) D(JB+J)=S1*(A(IA+I)-A(IB+I))+C1*(B(IA+I)-B(IB+I)) I=I+INC3 J=J+INC4 25 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 30 CONTINUE JBASE=JBASE+JUMP 40 CONTINUE RETURN ! ! CODING FOR FACTOR 3 ! 50 IA=1 JA=1 IB=IA+IINK JB=JA+JINK IC=IB+IINK JC=JB+JINK DO 60 L=1,LA I=IBASE J=JBASE !DIR$ IVDEP DO 55 IJK=1,LOT C(JA+J)=A(IA+I)+(A(IB+I)+A(IC+I)) D(JA+J)=B(IA+I)+(B(IB+I)+B(IC+I)) C(JB+J)=(A(IA+I)-0.5*(A(IB+I)+A(IC+I)))-(SIN60*(B(IB+I)-B(IC+I))) C(JC+J)=(A(IA+I)-0.5*(A(IB+I)+A(IC+I)))+(SIN60*(B(IB+I)-B(IC+I))) D(JB+J)=(B(IA+I)-0.5*(B(IB+I)+B(IC+I)))+(SIN60*(A(IB+I)-A(IC+I))) D(JC+J)=(B(IA+I)-0.5*(B(IB+I)+B(IC+I)))-(SIN60*(A(IB+I)-A(IC+I))) I=I+INC3 J=J+INC4 55 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 60 CONTINUE IF (LA.EQ.M) RETURN LA1=LA+1 JBASE=JBASE+JUMP DO 80 K=LA1,M,LA KB=K+K-2 KC=KB+KB C1=TRIGS(KB+1) S1=TRIGS(KB+2) C2=TRIGS(KC+1) S2=TRIGS(KC+2) DO 70 L=1,LA I=IBASE J=JBASE !DIR$ IVDEP DO 65 IJK=1,LOT C(JA+J)=A(IA+I)+(A(IB+I)+A(IC+I)) D(JA+J)=B(IA+I)+(B(IB+I)+B(IC+I)) C(JB+J)= * C1*((A(IA+I)-0.5*(A(IB+I)+A(IC+I)))-(SIN60*(B(IB+I)-B(IC+I)))) * -S1*((B(IA+I)-0.5*(B(IB+I)+B(IC+I)))+(SIN60*(A(IB+I)-A(IC+I)))) D(JB+J)= * S1*((A(IA+I)-0.5*(A(IB+I)+A(IC+I)))-(SIN60*(B(IB+I)-B(IC+I)))) * +C1*((B(IA+I)-0.5*(B(IB+I)+B(IC+I)))+(SIN60*(A(IB+I)-A(IC+I)))) C(JC+J)= * C2*((A(IA+I)-0.5*(A(IB+I)+A(IC+I)))+(SIN60*(B(IB+I)-B(IC+I)))) * -S2*((B(IA+I)-0.5*(B(IB+I)+B(IC+I)))-(SIN60*(A(IB+I)-A(IC+I)))) D(JC+J)= * S2*((A(IA+I)-0.5*(A(IB+I)+A(IC+I)))+(SIN60*(B(IB+I)-B(IC+I)))) * +C2*((B(IA+I)-0.5*(B(IB+I)+B(IC+I)))-(SIN60*(A(IB+I)-A(IC+I)))) I=I+INC3 J=J+INC4 65 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 70 CONTINUE JBASE=JBASE+JUMP 80 CONTINUE RETURN ! ! CODING FOR FACTOR 4 ! 90 IA=1 JA=1 IB=IA+IINK JB=JA+JINK IC=IB+IINK JC=JB+JINK ID=IC+IINK JD=JC+JINK DO 100 L=1,LA I=IBASE J=JBASE !DIR$ IVDEP DO 95 IJK=1,LOT C(JA+J)=(A(IA+I)+A(IC+I))+(A(IB+I)+A(ID+I)) C(JC+J)=(A(IA+I)+A(IC+I))-(A(IB+I)+A(ID+I)) D(JA+J)=(B(IA+I)+B(IC+I))+(B(IB+I)+B(ID+I)) D(JC+J)=(B(IA+I)+B(IC+I))-(B(IB+I)+B(ID+I)) C(JB+J)=(A(IA+I)-A(IC+I))-(B(IB+I)-B(ID+I)) C(JD+J)=(A(IA+I)-A(IC+I))+(B(IB+I)-B(ID+I)) D(JB+J)=(B(IA+I)-B(IC+I))+(A(IB+I)-A(ID+I)) D(JD+J)=(B(IA+I)-B(IC+I))-(A(IB+I)-A(ID+I)) I=I+INC3 J=J+INC4 95 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 100 CONTINUE IF (LA.EQ.M) RETURN LA1=LA+1 JBASE=JBASE+JUMP DO 120 K=LA1,M,LA KB=K+K-2 KC=KB+KB KD=KC+KB C1=TRIGS(KB+1) S1=TRIGS(KB+2) C2=TRIGS(KC+1) S2=TRIGS(KC+2) C3=TRIGS(KD+1) S3=TRIGS(KD+2) DO 110 L=1,LA I=IBASE J=JBASE !DIR$ IVDEP DO 105 IJK=1,LOT C(JA+J)=(A(IA+I)+A(IC+I))+(A(IB+I)+A(ID+I)) D(JA+J)=(B(IA+I)+B(IC+I))+(B(IB+I)+B(ID+I)) C(JC+J)= * C2*((A(IA+I)+A(IC+I))-(A(IB+I)+A(ID+I))) * -S2*((B(IA+I)+B(IC+I))-(B(IB+I)+B(ID+I))) D(JC+J)= * S2*((A(IA+I)+A(IC+I))-(A(IB+I)+A(ID+I))) * +C2*((B(IA+I)+B(IC+I))-(B(IB+I)+B(ID+I))) C(JB+J)= * C1*((A(IA+I)-A(IC+I))-(B(IB+I)-B(ID+I))) * -S1*((B(IA+I)-B(IC+I))+(A(IB+I)-A(ID+I))) D(JB+J)= * S1*((A(IA+I)-A(IC+I))-(B(IB+I)-B(ID+I))) * +C1*((B(IA+I)-B(IC+I))+(A(IB+I)-A(ID+I))) C(JD+J)= * C3*((A(IA+I)-A(IC+I))+(B(IB+I)-B(ID+I))) * -S3*((B(IA+I)-B(IC+I))-(A(IB+I)-A(ID+I))) D(JD+J)= * S3*((A(IA+I)-A(IC+I))+(B(IB+I)-B(ID+I))) * +C3*((B(IA+I)-B(IC+I))-(A(IB+I)-A(ID+I))) I=I+INC3 J=J+INC4 105 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 110 CONTINUE JBASE=JBASE+JUMP 120 CONTINUE RETURN ! ! CODING FOR FACTOR 5 ! 130 IA=1 JA=1 IB=IA+IINK JB=JA+JINK IC=IB+IINK JC=JB+JINK ID=IC+IINK JD=JC+JINK IE=ID+IINK JE=JD+JINK DO 140 L=1,LA I=IBASE J=JBASE !DIR$ IVDEP DO 135 IJK=1,LOT C(JA+J)=A(IA+I)+(A(IB+I)+A(IE+I))+(A(IC+I)+A(ID+I)) D(JA+J)=B(IA+I)+(B(IB+I)+B(IE+I))+(B(IC+I)+B(ID+I)) C(JB+J)=(A(IA+I)+COS72*(A(IB+I)+A(IE+I))-COS36*(A(IC+I)+A(ID+I))) * -(SIN72*(B(IB+I)-B(IE+I))+SIN36*(B(IC+I)-B(ID+I))) C(JE+J)=(A(IA+I)+COS72*(A(IB+I)+A(IE+I))-COS36*(A(IC+I)+A(ID+I))) * +(SIN72*(B(IB+I)-B(IE+I))+SIN36*(B(IC+I)-B(ID+I))) D(JB+J)=(B(IA+I)+COS72*(B(IB+I)+B(IE+I))-COS36*(B(IC+I)+B(ID+I))) * +(SIN72*(A(IB+I)-A(IE+I))+SIN36*(A(IC+I)-A(ID+I))) D(JE+J)=(B(IA+I)+COS72*(B(IB+I)+B(IE+I))-COS36*(B(IC+I)+B(ID+I))) * -(SIN72*(A(IB+I)-A(IE+I))+SIN36*(A(IC+I)-A(ID+I))) C(JC+J)=(A(IA+I)-COS36*(A(IB+I)+A(IE+I))+COS72*(A(IC+I)+A(ID+I))) * -(SIN36*(B(IB+I)-B(IE+I))-SIN72*(B(IC+I)-B(ID+I))) C(JD+J)=(A(IA+I)-COS36*(A(IB+I)+A(IE+I))+COS72*(A(IC+I)+A(ID+I))) * +(SIN36*(B(IB+I)-B(IE+I))-SIN72*(B(IC+I)-B(ID+I))) D(JC+J)=(B(IA+I)-COS36*(B(IB+I)+B(IE+I))+COS72*(B(IC+I)+B(ID+I))) * +(SIN36*(A(IB+I)-A(IE+I))-SIN72*(A(IC+I)-A(ID+I))) D(JD+J)=(B(IA+I)-COS36*(B(IB+I)+B(IE+I))+COS72*(B(IC+I)+B(ID+I))) * -(SIN36*(A(IB+I)-A(IE+I))-SIN72*(A(IC+I)-A(ID+I))) I=I+INC3 J=J+INC4 135 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 140 CONTINUE IF (LA.EQ.M) RETURN LA1=LA+1 JBASE=JBASE+JUMP DO 160 K=LA1,M,LA KB=K+K-2 KC=KB+KB KD=KC+KB KE=KD+KB C1=TRIGS(KB+1) S1=TRIGS(KB+2) C2=TRIGS(KC+1) S2=TRIGS(KC+2) C3=TRIGS(KD+1) S3=TRIGS(KD+2) C4=TRIGS(KE+1) S4=TRIGS(KE+2) DO 150 L=1,LA I=IBASE J=JBASE !DIR$ IVDEP DO 145 IJK=1,LOT C(JA+J)=A(IA+I)+(A(IB+I)+A(IE+I))+(A(IC+I)+A(ID+I)) D(JA+J)=B(IA+I)+(B(IB+I)+B(IE+I))+(B(IC+I)+B(ID+I)) C(JB+J)= * C1*((A(IA+I)+COS72*(A(IB+I)+A(IE+I))-COS36*(A(IC+I)+A(ID+I))) * -(SIN72*(B(IB+I)-B(IE+I))+SIN36*(B(IC+I)-B(ID+I)))) * -S1*((B(IA+I)+COS72*(B(IB+I)+B(IE+I))-COS36*(B(IC+I)+B(ID+I))) * +(SIN72*(A(IB+I)-A(IE+I))+SIN36*(A(IC+I)-A(ID+I)))) D(JB+J)= * S1*((A(IA+I)+COS72*(A(IB+I)+A(IE+I))-COS36*(A(IC+I)+A(ID+I))) * -(SIN72*(B(IB+I)-B(IE+I))+SIN36*(B(IC+I)-B(ID+I)))) * +C1*((B(IA+I)+COS72*(B(IB+I)+B(IE+I))-COS36*(B(IC+I)+B(ID+I))) * +(SIN72*(A(IB+I)-A(IE+I))+SIN36*(A(IC+I)-A(ID+I)))) C(JE+J)= * C4*((A(IA+I)+COS72*(A(IB+I)+A(IE+I))-COS36*(A(IC+I)+A(ID+I))) * +(SIN72*(B(IB+I)-B(IE+I))+SIN36*(B(IC+I)-B(ID+I)))) * -S4*((B(IA+I)+COS72*(B(IB+I)+B(IE+I))-COS36*(B(IC+I)+B(ID+I))) * -(SIN72*(A(IB+I)-A(IE+I))+SIN36*(A(IC+I)-A(ID+I)))) D(JE+J)= * S4*((A(IA+I)+COS72*(A(IB+I)+A(IE+I))-COS36*(A(IC+I)+A(ID+I))) * +(SIN72*(B(IB+I)-B(IE+I))+SIN36*(B(IC+I)-B(ID+I)))) * +C4*((B(IA+I)+COS72*(B(IB+I)+B(IE+I))-COS36*(B(IC+I)+B(ID+I))) * -(SIN72*(A(IB+I)-A(IE+I))+SIN36*(A(IC+I)-A(ID+I)))) C(JC+J)= * C2*((A(IA+I)-COS36*(A(IB+I)+A(IE+I))+COS72*(A(IC+I)+A(ID+I))) * -(SIN36*(B(IB+I)-B(IE+I))-SIN72*(B(IC+I)-B(ID+I)))) * -S2*((B(IA+I)-COS36*(B(IB+I)+B(IE+I))+COS72*(B(IC+I)+B(ID+I))) * +(SIN36*(A(IB+I)-A(IE+I))-SIN72*(A(IC+I)-A(ID+I)))) D(JC+J)= * S2*((A(IA+I)-COS36*(A(IB+I)+A(IE+I))+COS72*(A(IC+I)+A(ID+I))) * -(SIN36*(B(IB+I)-B(IE+I))-SIN72*(B(IC+I)-B(ID+I)))) * +C2*((B(IA+I)-COS36*(B(IB+I)+B(IE+I))+COS72*(B(IC+I)+B(ID+I))) * +(SIN36*(A(IB+I)-A(IE+I))-SIN72*(A(IC+I)-A(ID+I)))) C(JD+J)= * C3*((A(IA+I)-COS36*(A(IB+I)+A(IE+I))+COS72*(A(IC+I)+A(ID+I))) * +(SIN36*(B(IB+I)-B(IE+I))-SIN72*(B(IC+I)-B(ID+I)))) * -S3*((B(IA+I)-COS36*(B(IB+I)+B(IE+I))+COS72*(B(IC+I)+B(ID+I))) * -(SIN36*(A(IB+I)-A(IE+I))-SIN72*(A(IC+I)-A(ID+I)))) D(JD+J)= * S3*((A(IA+I)-COS36*(A(IB+I)+A(IE+I))+COS72*(A(IC+I)+A(ID+I))) * +(SIN36*(B(IB+I)-B(IE+I))-SIN72*(B(IC+I)-B(ID+I)))) * +C3*((B(IA+I)-COS36*(B(IB+I)+B(IE+I))+COS72*(B(IC+I)+B(ID+I))) * -(SIN36*(A(IB+I)-A(IE+I))-SIN72*(A(IC+I)-A(ID+I)))) I=I+INC3 J=J+INC4 145 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 150 CONTINUE JBASE=JBASE+JUMP 160 CONTINUE RETURN END